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A core function of the cerebellum is to predict the sensory 
consequences of motor actions1,2 by learning sensorimotor 
associations3. This is achieved by combining sensory and 

motor information from multiple sources. These include the neo-
cortex, which is extensively interconnected with the cerebellar cor-
tex, forming multi-synaptic loops via the basal pontine nucleus and 
thalamus4. Sensorimotor information enters the cerebellar cortex 
via mossy fibers5–8, which are sampled by a much larger population 
of granule cells (GrCs), located in the input layer. This ‘expansion 
recoding’ involves mixing of mossy fiber inputs with diverse func-
tional properties9 and non-linear thresholding in GrCs combined 
with anatomical expansion, which is thought to increase the dimen-
sionality of GrC representations10–12. Such non-linear mixing and 
expansion is proposed to separate neuronal activity patterns by pro-
jecting them into a high-dimensional space10–15. High-dimensional 
codes have recently been observed in forebrain structures, includ-
ing the neocortex, when viewing natural scenes16, when perform-
ing complex cognitive tasks17 and during spontaneous behaviors18. 
By contrast, the dimensionality of neural activity in the cerebel-
lar cortex has been found to be much lower, encoding movement 
parameters in a small number of variables19,20. However, it is unclear 
whether this arises from an inability of feed-forward cerebellar cir-
cuits to support high-dimensional population codes or the nature 
of the behavioral tasks, which could limit the dimensionality of 
their neural representations21. Determining whether the cerebellar 
cortex can support high-dimensional sensorimotor representations 
is, therefore, a key test of theoretical predictions that it performs 
expansion recoding10,11 and pattern separation12–14 and whether the 
neocortex and cerebellar cortex use distinct population-level senso-
rimotor representations.

Results
Axonal population activity. To investigate sensorimotor represen-
tations in the cerebellar cortex, we selectively expressed GCaMP6f  

in cerebellar GrCs in mouse Crus I (Extended Data Fig. 1), an area 
that encodes information from the whiskers7,22,23. Rather than imag-
ing GrC somata19,20,24, where synaptic and action potential-linked 
Ca2+ influx could be mixed owing to their close proximity25, we moni-
tored GrC axons in the molecular layer (parallel fibers), because their 
varicosities exhibit large action potential-induced Ca2+ transients26. 
We used the unique orthogonal arrangement of parallel fibers and 
Purkinje cell dendritic trees to read out GrC activity from the point 
of view of the ‘downstream decoder’ (that is, Purkinje cells; Fig. 1a). 
To do this, we used acousto-optic lens (AOL) three-dimensional 
(3D) two-photon microscopy27 (Methods) to simultaneously image 
multiple x–y ‘patches’ (x: 48–110 μm, y: 13–20 μm) positioned with 
a staircase arrangement through the molecular layer (Fig. 1a). 
Moreover, real-time and post hoc correction for brain movement 
enabled reliable recordings from parallel fiber varicosities during 
behavior (Methods and Supplementary Video 1). Head-fixed mice 
were free to stand or run on a wheel and to whisk. Such spontane-
ous behaviors encompass many more individual movements than 
simple constrained behaviors and are, therefore, likely to have a 
higher intrinsic dimensionality21. Parallel fiber varicosities within 
each of the imaged patches were identified and grouped into puta-
tive axons on the basis of their spatial alignment along the averaged 
parallel fiber direction and the level of correlation in their activity  
(Fig. 1b,c, Extended Data Fig. 2 and Methods). To validate our 
grouping procedure, we measured the distance between varicosities 
on the same putative GrC axon, as this was not one of the structural 
criteria used for grouping. The observed intervaricosity distance var-
ied between 2 μm and 17 μm, with a mean of 5.50 ± 0.08 μm (1,080 
putative axons with multiple varicosities), a range and mean that 
were similar to high-resolution measurements from sparsely labeled  
parallel fibers in fixed tissue28 (Fig. 1d). After this analysis, we iden-
tified 135–700 GrC axons per recording (Fig. 1e). Parallel fiber pop-
ulation activity had a rich and diverse structure that was correlated 
to the whisker set point (low-frequency changes in whisker angle) 
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and to the locomotion speed of the animal (Fig. 1e and Extended 
Data Fig. 3).

Spontaneous behavior typically consisted of periods of quiet 
wakefulness (QW), when the mice rested on the wheel and exhib-
ited little movement or whisking, and periods of pronounced 
whisking and locomotion, which we called the active state (AS), 
and which likely encompassed additional unobserved behaviors 
(Fig. 2a). Indeed, whisking and locomotion speed were highly cor-
related with one another (P = 2.4 × 10−4, Wilcoxon signed-rank 

test, n = 13 experiments, N = 5 animals; Supplementary Table 1 
and Extended Data Fig. 3). Parallel fiber activity showed a con-
tinuum of responses (Fig. 1e and Extended Data Fig. 4a,b), includ-
ing both positively and negatively modulated responses during the 
AS (Figs. 1e and 2b). Comparison of the ΔF/F in axons during AS 
and QW revealed a majority of AS-preferring parallel fibers (posi-
tively modulated, 66%, n = 13, N = 5), with a smaller population of 
QW-preferring parallel fibers (negatively modulated, 19%; Fig. 2b). 
Correlation of parallel fiber activity with whisking and locomotor 
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Fig. 1 | GrC axon population activity during spontaneous behaviors. a, Schematic of the experimental configuration for the AOL 3D imaging showing a 
head-fixed mouse on a wheel, along with a high-speed camera to track whisker movement (left). Spatial arrangement of multiple simultaneously acquired 
imaging planes (‘patches’) within the imaging volume in relation to GrC axons (in green) and Purkinje cell dendritic trees (in gray) in the molecular 
layer with an example of an imaged patch showing varicosities expressing GCaMP6f (average fluorescence image, right). b, Example of varicosity 
grouping (n = 1, N = 1 of n = 13, N = 5). Top: correlation image of a patch (13.7 μm × 68.4 μm) with identified varicosities outlined in white dots. Grayscale 
indicates correlation with the fluorescence of neighboring pixels. The colored outlines show examples of grouped varicosities per axon, with each color 
corresponding to one axon. Bottom: ΔF/F traces for each varicosity highlighted in color. c, Matrix showing correlation among ΔF/F traces of varicosities  
in b. Colored bars on the side show the grouping into putative axons. The strongest correlations were between varicosities on the same putative axon.  
d, Distribution of distances between varicosities grouped onto the same putative parallel fiber (n = 13, N = 5). The red arrow shows the mean 
intervaricosity distance. The black line and the arrow indicate the range and mean intervaricosity distances, respectively, as determined previously in fixed 
tissue with anatomical methods28. The close match suggests that our detection of varicosities and method of grouping into axons identifies the majority of 
boutons per active axon in the imaged patch. e, Top: example of activity (ΔF/F) of 700 putative GrC axons (parallel fibers) in a single experiment, grouped 
into positively modulated (PM, red), negatively modulated (NM, blue) and non-modulated (non-M, gray) parallel fibers. Bottom: whisker set point 
(slow-frequency component of whisker angle) and locomotion speed. WSP, whisker set point.
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sensorimotor variables revealed a similar fraction of positively and 
negatively modulated axons associated with each of these behav-
ioral parameters (Extended Data Fig. 3). Because it is possible that 
negatively modulated parallel fiber signals could arise from axial 
brain movement, we compared the intensity of beads embedded 
within the tissue with the activity of negatively modulated axons. 
No correlation between negatively modulated parallel fiber activ-
ity and bead fluorescence was observed, ruling out this possibility 
(Supplementary Fig. 1). Moreover, both positively and negatively 
modulated responses were also observed when imaging larger GrC 
somata during whisking and locomotion (Supplementary Fig. 2). 
This finding also argues against the possibility that negatively mod-
ulated axon reponses arose from undetected off-target expression 
in molecular layer interneurons or Purkinje cells. A smaller propor-
tion of parallel fibers were not significantly modulated by behavioral 
state (15%). For these parallel fibers, Ca2+ events were evident, and 
the distribution of signal-to-noise ratios (SNRs) was similar to those 
of positively or negatively modulated parallel fibers, indicating that 
their lack of modulation was not simply due to noise (Extended 
Data Fig. 5). Overall, the proportions of negatively modulated, posi-
tively modulated and non-modulated parallel fibers were consistent 
across experimental sessions and animals (Extended Data Fig. 6). 
Owing to the relatively low sensitivity of GCaMP6f for single spikes, 
these ΔF/F responses are likely to correspond to bursts or sustained 
spiking in parallel fibers. Nevertheless, these results show that spon-
taneous behaviors are represented in a bi-directional parallel fiber 
population code in Crus I. This reveals a greater diversity in GrC 
responses than previously reported in awake behaving mice20,24,25.

Previous findings in anesthetized mice showed that paral-
lel fibers are activated in sparse clusters during discrete sensory 
stimulation of the perioral region29. To investigate whether clusters 
of parallel fiber activity are present during spontaneous behavior, 

we computed the average pairwise cross-correlation for each pair 
of axons and estimated the pairwise distance between axons in 
the recorded 3D volume (Extended Data Fig. 7a). No significant 
spatial dependence in the correlation coefficients was observed in 
the x–y plane, except for a weak increase between parallel fibers 
within 2 μm (P < 10−4, Wilcoxon rank-sum test, n = 13, N = 5;  
Fig. 2c), likely due to our conservative grouping procedure. A simi-
lar result was obtained for ungrouped varicosities (Extended Data  
Fig. 7b) and when we included the z dimension across imaging 
planes, albeit at lower spatial resolution (Extended Data Fig. 7c). 
Moreover, when positively and negatively modulated parallel fiber 
responses were examined separately, they showed no preferential 
clustering, as the distribution of within-group nearest neighbor 
(NN) distances remained similar after shuffling the group labels 
(positively modulated: 3,403 putative axons, P = 0.32, and negatively 
modulated: 896 putative axons, P = 0.21, Kolmogorov–Smirnoff 
test, n = 13, N = 5; Fig. 2d). Next, we investigated whether spatial 
clustering occurred during more defined behaviors. However, when 
our analysis was restricted to locomotion onsets, no significant spa-
tial dependence in the correlation structure was observed (Extended 
Data Fig. 4c,d). These results show that parallel fiber activity in Crus 
I lacks spatial clustering during spontaneous behaviors.

Geometry of neural representations. We next explored how 
behavior is encoded across the parallel fiber population in Crus I 
by examining neural activity space, in which each dimension rep-
resents a different neuron, and each point in space corresponds to 
a unique pattern of activity across the population of axons. Because 
of the discrete behavioral state transitions in our data (Fig. 2a), we 
expected to observe two clusters of points corresponding to AS 
and QW. In principle, these clusters could overlap significantly, 
or, alternatively, they could be encoded in distinct, well-separated 
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Fig. 2 | Bidirectional spatially mixed parallel fiber responses during active behavioral state. a, Example of behavioral state segmentation and parallel fiber 
responses. Top: time series of whisker set point (WSP) and locomotion speed labeled as periods of active state (AS, magenta), quiet wakefulness (QW, 
cyan) or unclassified (black) time points. Bottom: ΔF/F traces of parallel fibers that exhibited a significant increase or decrease during the AS compared 
to during QW (P < 0.05, two-sided shuffle test). b, Histogram of changes in ΔF/F response during the AS relative to QW across all parallel fibers (n = 13, 
N = 5). Positively modulated (PM, red) and negatively modulated (NM, blue) parallel fibers as well as axons that were not significantly modulated by 
behavioral state (gray). c, Average pairwise correlation between parallel fiber activity as a function of the distance between axons (n = 13, N = 5), shown for 
PM (red) parallel fibers, NM (blue) parallel fibers and all parallel fibers (gray). Shading indicates s.e.m., and solid lines indicate double-exponential fits.  
d, Within-group nearest-neighbor (NN) distances for PM (red) and NM (blue) parallel fibers and shuffle controls (black) (n = 13, N = 5).
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representations (or ‘manifolds’; Fig. 3a). To visualize the structure 
of the representations of AS and QW, we reduced the dimensional-
ity of the neural activity space by plotting the first three principal 
components (PCs) of the parallel fiber population activity (Fig. 3b). 
This revealed that parallel fiber activity represented AS and QW in 
well-separated manifolds, which were connected by distinct tra-
jectories representing transitions in either direction (AS→QW or 
QW→AS; Supplementary Video 2). Clearly separated manifolds for 
AS and QW were present in all five animals with more than 100 
parallel fibers recorded (Fig. 3b and Extended Data Fig. 8). The 
quantification of the average intra-manifold Euclidean distances  
to the inter-manifold distances revealed that the average distance 
between the AS and QW manifolds was 30–40% larger than either 
manifold (P = 2.4 × 10−4 (AS), P = 2.4 × 10−4 (QW), Wilcoxon 
signed-rank test, n = 13, N = 5; Fig. 3c), indicating that these  
behavioral manifolds were well separated. In two animals, we 
observed isolated whisker movements in the absence of locomotion. 
Because these were excluded from the AS and QW state criteria, 
we wondered whether the neural representations of these isolated 
whisks would be embedded in the AS representation or occupy a 
separate region of neural activity space. Analysis of these isolated 
whisking periods revealed that they, indeed, occupied a region of 

activity space that was distinct from the AS and QW manifolds 
(Supplementary Fig. 3).

The geometry of neural representations can provide insight 
about the computations performed by neural populations30. For 
example, in the motor and pre-motor cortices, orthogonal mani-
folds are thought to limit interference between different behav-
iors31,32. Visualization and rotation of the AS and QW manifolds 
revealed an apparently orthogonal arrangement in activity space 
(Supplementary Video 3). To quantify how the manifolds were 
orientated, we calculated the angle between the AS and QW sub-
spaces within the neural activity space (Fig. 3d and Methods). 
Noisy estimates of the principal axes of the behavioral subspaces 
could make the subspaces appear artificially orthogonal, because 
random vectors are likely to be orthogonal in a neural activity space 
with high extrinsic dimensionality (that is, large number of neu-
rons). To control for measurement noise, we calculated the angle 
between random halves of the population activity after shuffling 
across time. Repeating this procedure gave a null distribution of 
angles for each experiment, which could then be compared with the 
angle observed in the data (Fig. 3e). The mean angle between the 
subspaces for the AS and QW was 1.4 ± 0.02 radians, suggesting that 
they were nearly orthogonal, with significantly smaller values in the 
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control (0.5 ± 0.09 radians, P = 4.9 × 10−4, Wilcoxon signed-rank 
test, 12/13 experiments reached significance, n = 13, N = 5; Fig. 3f).  
These findings establish that population activity in the cerebellar 
cortex is organized into orthogonal subspaces representing different 
behavioral states.

We next asked whether subspace orthogonality arose simply 
from distinct populations of parallel fibers being active during the 
different behavioral states. To test this, we removed increasing frac-
tions of the strongest positively and negatively modulated axons and 
recalculated the angle between AS and QW subspaces. As more pos-
itively and negatively modulated parallel fibers were excluded, the 
angle between these subspaces gradually decreased but remained 
significantly larger than in the shuffle control (P < 4.5 × 10−3 for 
0th through 70th percentile of positively and negatively modulated 
parallel fibers excluded, Wilcoxon signed-rank test with Bonferroni 
correction; Fig. 3g). The decrease in angle between AS and QW 
subspaces was not significantly different from a control in which 
we excluded the same number of neurons, randomly sampled from 
the entire distribution (0th through 100th percentile, Wilcoxon 
signed-rank test with Bonferroni correction; Fig. 3g), suggesting 
that this decrement could be due to a fall in the number of neu-
rons. The robustness to removing strongly negatively and positively 
modulated parallel fiber responses shows that they were not the sole 

determinant of the orthogonality of the AS and QW manifolds. This 
suggests that subspace orthogonality is not simply inherited from 
the bi-directionality of the parallel fiber responses.

Distributed sensorimotor representations. Because transitions  
between QW and AS were associated with protraction and retraction  
of the whiskers, we next asked whether widespread activity  
mediated by the positively and negatively modulated parallel  
fibers could be explained by changes in whisker set point. To 
investigate this, we examined how the first principal component 
(PC1), which captures widespread changes in parallel fiber activ-
ity, was related to whisker set point. Although PC1 captured the 
transitions between AS and QW, it did not reflect different resting  
positions of the whisker set point during QW, even when it var-
ied over the majority of its range (Fig. 4a,b). Across animals, PC1 
was significantly correlated with whisker set point over all time 
(0.69 ± 0.05, n = 13, N = 5; Fig. 4c), but there was little correlation 
during QW (0.04 ± 0.06, n = 13, N = 5). Instead, PC1 was highly 
correlated with a binary variable reflecting the behavioral state 
(0.89 ± 0.02, n = 13, N = 5). Moreover, PC1 was significantly cor-
related with whisker set point during the AS (0.49 ± 0.06, n = 13, 
N = 5), indicating that it contains information about whisker posi-
tion during active whisking. These results suggest that widespread 
modulation of parallel fiber activity in Crus I (that is, PC1) is corre-
lated with active behaviors rather than encoding detailed informa-
tion on whisker set point.

We next asked whether more detailed information on the whis-
ker set point was present in the GrC population activity as a whole. 
To investigate this, we used cross-validated linear regression to pre-
dict whisker set point from increasing numbers of PCs and calcu-
lated the unexplained variance in held-out data that was not used 
for training (Fig. 5a,b and Methods). Across animals, decoding from 
the optimal number of PCs led to substantially better decoding per-
formance than the first PC (P = 2.4 × 10−4, Wilcoxon signed-rank 
test, n = 13, N = 5; Fig. 5c) or the first ten PCs (P = 2.4 × 10−4, 
Wilcoxon signed-rank test, n = 13, N = 5). This improvement was 
not due to an increased number of parameters because decoding 
performance was cross-validated. This suggests that more detailed 
information on whisker set point is available in the higher PCs of 
parallel fiber activity. Given the low correlation between whisker set 
point and PC1 during QW (Fig. 4c), we next investigated whether 
any information on whisker set point resting positions was pres-
ent across GrCs during QW. To this end, we trained a decoder on 
activity exclusively during QW. The QW-only decoder was sig-
nificantly better at predicting whisker set point during QW than 
a decoder trained on randomly sampled times during the experi-
ment (P = 2.4 × 10−4, Wilcoxon signed-rank test, n = 13, N = 5;  
Fig. 5d). These results suggest that detailed information about whis-
ker set point is available in the population activity, and more than 
one linear decoder (for example, Purkinje cell) might be required to 
decode across different states.

The finding that many PCs are required to decode detailed whis-
ker set point information raises the question of how such informa-
tion is distributed across parallel fibers. Classic cerebellar theories 
have argued that sensorimotor information should be distributed 
across GrC populations rather than encoded in single GrCs10–14. 
To test this, we used lasso regression (L1 regularization; Methods) 
to quantify the minimal number of parallel fibers necessary for 
optimal decoding. This gave a minimum unexplained variance 
with 225 ± 22 parallel fibers, which was substantially lower than 
for the best performing parallel fiber (P = 2.4 × 10−4, Wilcoxon 
signed-rank test, n = 13, N = 5; Fig. 5e,f). To investigate whether 
such distributed representations are present for other behavioral 
variables, we also investigated locomotion speed. Hundreds of par-
allel fibers (184 ± 22 parallel fibers, n = 11, N = 5) were required to 
minimize the cross-validated unexplained variance for locomotion 
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speed (Extended Data Fig. 9a–c). Although there was a weak cor-
relation between the decoders of whisker set point and locomotion 
(correlation between decoder coefficients: r = 0.17 ± 0.04, n = 11, 
N = 5), there was an inverse relationship between decoding error 
and the similarity of the regression coefficients (Extended Data  
Fig. 9d), indicating that more complete representations of these 
variables tended to be partially aligned. These findings suggest that 
sensorimotor representations are distributed across the parallel 
fiber population.

Dimensionality of population activity. Theoretical work on cere-
bellar pattern separation predicts that sensorimotor representations 
in GrC populations are high-dimensional10–14. To test this, we quan-
tified the dimensionality of parallel fiber population activity during 
spontaneous behaviors using a cross-validated variant of princi-
pal component analysis (PCA) (Methods). This revealed that the 
state-dependent changes reflected in PC1 captured only 10.3 ± 1.2% 
of the variance (Fig. 6a, inset; data subsampled to 300 axons, n = 10, 
N = 3). We then estimated the number of PCs required to attain 
the maximum variance explained, beyond which it decreased due 
to noise or other non-shared variability (Fig. 6a). This provided a 
lower bound on the dimensionality that could be inferred given the 

noise level within each experiment (21.6 ± 2.5 dimensions in 300 
parallel fibers explaining 34.2 ± 3.7% of the variance, n = 10, N = 3; 
Methods). To obtain a more accurate estimate of the dimensionality, 
we noted that experiments with higher values of maximum variance 
explained tended to have a higher dimensionality (Fig. 6a). A sim-
ple model confirmed that a linear relationship is expected across a 
wide range of signal-to-noise levels (Extended Data Fig. 10). Linear 
extrapolation of the data suggested that 62 dimensions are required 
to explain the full variance of a population of 300 parallel fibers dur-
ing spontaneous behaviors (Fig. 6b). This corresponds to a highly 
non-redundant population code with an average of only five paral-
lel fibers for each encoded dimension. This ratio remained low for 
populations of up to 650 parallel fibers (4–5 neurons per dimension; 
Fig. 6c), indicating that population activity in GrC axons is high 
dimensional during spontaneous behaviors.

Discussion
Our recordings from hundreds of GrC axons in the molecular 
layer establish that the cerebellar cortex can support distributed, 
high-dimensional representations during spontaneous behaviors. 
The presence of high-dimensional population activity is consistent 
with the cerebellar input layer performing pattern separation12, as 
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proposed by the Marr–Albus theory10,11, and potentially explains 
why GrCs are so numerous33. This contrasts with previous find-
ings of low-dimensional GrC population activity during a mouse  

forelimb lever task20 and tail movements in zebrafish larvae19. 
However, it was unclear whether these results were due to an inabil-
ity of the cerebellar cortex to support high-dimensional representa-
tions or the low dimensionality of these defined behavioral tasks21. 
Our finding that only five GrC axons are required, on average, to 
encode each dimension is similar to the low number of neurons per 
dimension found in the visual cortex, which has been shown to be 
as high dimensional as possible while also maintaining a smooth 
population code, which aids generalization to novel stimuli18. Thus, 
the dimensionality of parallel fiber activity that we observed could 
be near the optimum set by the tradeoffs among pattern separabil-
ity, robustness to noise and generalizability.

Our results also show that GrC axonal populations employ a 
bi-directional coding strategy and that differentially modulated 
parallel fibers are spatially dispersed within the molecular layer. The 
fact that a subpopulation of GrCs are active in the absence of move-
ment is consistent with previously reported cell-attached recordings 
from individual GrCs in Crus I, which showed that, although most 
GrCs fire during periods of active whisking, some exhibit substan-
tial firing rates at rest22. Bi-directional coding is likely to be wide-
spread across other lobules in the cerebellum where individual GrCs 
and mossy fibers exhibit tuning for a range of sustained variables, 
including joint angle5 and angular head velocity6. It is possible that 
the positively and negatively modulated GrC responses we report 
here could contribute to the increased and decreased responses 
observed in downstream inhibitory interneurons in the molecular 
layer22 and Purkinje cells34–36.

Our choice to study spontaneous behaviors was motivated by 
recent work demonstrating that the dimensionality of neural rep-
resentations is limited by the richness of the behavior21. However, 
this variability brings with it certain challenges that warrant con-
sideration37. Our definition of what constitutes an AS likely com-
bines many behavioral parameters, and, as a result, the manifold 
structures that we have identified might aggregate multiple rep-
resentations. Thus, although the representations we observe dur-
ing spontaneous behaviors demonstrate that the cerebellar cortex 
can support high-dimensional activity, simpler behaviors and the 
individual behavioral parameters that contribute to spontaneous 
behaviors are both likely to be represented by lower-dimensional 
manifold structures. These could be embedded within the cod-
ing subspace12, consistent with the low-dimensional representa-
tions reported for well-defined behaviors19,20. Future work will be 
required to explore the properties of the full manifold structure of 
these neural representations38.

The high dimensionality and distributed nature of the paral-
lel fiber population activity that we observe support the idea that 
the cerebellar input layer generates mixed sensorimotor represen-
tations13. This population coding strategy provides the capacity to 
encode vast numbers of different sensorimotor combinations that 
arise during complex behaviors15,17. Moreover, the spatially uniform 
activity structure, when viewed in the plane of the Purkinje cell 
dendritic tree, suggests that parallel fiber synaptic inputs could be 
spatially distributed across the Purkinje cell dendritic tree during 
spontaneous behaviors. Such a configuration favors linear synap-
tic integration39, potentially enabling Purkinje cells to act as linear 
decoders34,40 as originally proposed in classical theories of cerebellar 
function10,11. However, parallel fiber activity reflects only potential 
synaptic inputs onto Purkinje cells (or molecular layer interneu-
rons). Synaptic plasticity rules3 are likely to further select subsets 
of GrCs that form functional synapses, because most synapses on 
an individual Purkinje cell are silent41. Thus, the pattern of synap-
tic input onto an individual Purkinje cell could still exhibit struc-
ture because it is likely to be a spatially42 and temporally43 selected 
subset of the parallel fiber population activity. Although further 
work is required to elucidate how individual Purkinje cells decode 
the parallel fiber activity that passes through their dendritic trees,  
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our findings suggest that the functional and anatomical properties 
of parallel fibers are well suited for generating the wide array of sen-
sorimotor associations required for predicting the sensory conse-
quences of self-generated movements1,2 and could be employed in 
coordinating other dynamical processes, including those underly-
ing cognitive processes44.

Dimensionality reduction of the parallel fiber population activ-
ity in Crus I revealed that it forms distinct, well-separated mani-
folds representing AS and QW that are orthogonally arranged. 
Orthogonal manifolds have been reported in the neocortex18,31,32,45, 
but such properties have not previously been reported in the sim-
pler, largely feed-forward architecture of the cerebellar cortex. In 
the pre-motor cortex, orthogonal ‘output-potent’ and ‘output-null’ 
subspaces have been proposed to separate neural activity that has a 
direct behavioral output from activity that reflects internal compu-
tations, such as motor preparation31,45. The finding that the cerebel-
lum contributes to preparatory activity in the motor cortex46,47 raises 
the possibility that the orthogonal manifolds in the cerebellum per-
form a similar function.

Our finding that the cerebellar GrC population code shares 
several properties in common with the neocortex—including 
positively and negatively modulated responses48, representation 
of behavioral state18,31, orthogonal manifolds18,31,32,45 and mixed17, 
high-dimensional distributed representations of spontaneous 
behaviors18—extends recent observations of a high level of coordi-
nation in the activity of individual cells in the cerebellum and neo-
cortex20. Indeed, both the cortico-pontine pathway, which conveys 
efferent copy information to the cerebellum49, and the return loop 
of the cortico-thalamo-cerebellar pathway4, could be involved in 
generating and sharing common population-level representations.

Our results establish that the cerebellar GrC population code can 
use a high-dimensional neural activity space, as predicted for a gen-
eral purpose pattern separation device12. Moreover, we show that 
GrC population representations share several features in common 
with those in the neocortex, raising the possibility that sensorimo-
tor information is shared through an effective communication sub-
space50 in the cortico-cerebellar system.
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Methods
Animal preparation for in vivo imaging. All experimental procedures were 
approved by the UCL Animal Welfare Ethical Review Body and the UK Home 
Office under the Animal (Scientific Procedures) Act 1986. To specifically express 
the Ca2+ indicator GCaMP6f51 in GrCs, we used the Slc17a7-IRES-Cre transgenic 
line52,53, which is known to express Cre recombinase in VGlut1-expressing 
excitatory neurons. In the cerebellar input layer, GrCs are the only neurons 
expressing VGlut1 (refs. 52–54), which restricted the expression of GCaMP6f to 
this neuronal population. Stereotaxic injections were performed under sterile 
conditions on 6–12-week-old heterozygous Slc17a7-IRES-Cre mice (male and 
female). After analgesic injection with buprenorphine (0.1 mg kg−1), mice were 
deeply anesthetized with a ketamine:xylazine mix (100:10 mg kg−1) and mounted 
in a stereotaxic frame (Kopf Instruments). Then, 5-μl pipettes (BLAUBRAND, 
7087-07) were pulled on a Sutter P97 micropipette puller, cut to 10–20-μm internal 
diameter and suction filled with AAV9.CAG.Flex.GCaMP6f.WPRE.SV40 (AV-
9-PV2816, Penn Vector Core). In three animals, red retrobeads IX (0.02–0.2 μm, 
Lumafluor) were mixed with the adeno-associated virus (AAV) to be used as 
tracking objects for real-time movement correction (diluted 1:1,000). A small 
craniotomy was performed above the injection site, and the pipette was slowly 
lowered to minimize tissue damage at coordinates of the cerebellar hemisphere in 
the Crus I region (6.5 mm anterior to bregma, 2.5 mm lateral to the midline and 
0.2 mm from the pia). A single injection of ~100 nl of virus was performed via 
a Toohey Spritzer Pressure System (Toohey Company). Analgesia (bupivacaine 
0.05%) was then administered to the surgical wound site. After surgery, 
atipamezole (1 mg kg−1) was administered for xylazine reversal.

Headplate and cranial window surgery. After 3–8 weeks of AAV expression,  
mice were implanted with a head plate for imaging. Mice received pre-surgery 
injections of dexamethasone (1 mg kg−1), atropine (0.04 mg kg−1) and  
carprofen (5 mg kg−1) before induction of anaesthesia with a mixture of fentanyl 
(0.075 mg kg−1), medetomidine (0.75 mg kg−1) and midazolam (7.5 mg kg−1). 
Viscotears liquid eye gel application was used to prevent dehydration, and 
body temperature was maintained throughout the surgery with a heat pad and 
temperature controller system (FHC). After removal of overlying skin, a custom 
head plate was centerd above Crus I and attached to the skull using dental acrylic 
cement (Paladur, Kulzer). A 5-mm craniotomy was performed over the Crus I 
region, and the exposed cerebellar cortex was cleared with sterile cortex buffer 
(125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM 
CaCl2 (pH 7.4)) to wash blood and remaining debris from the craniotomy. The 
craniotomy was then sealed with a 5-mm glass coverslip (630-2112, VWR) 
and fixed with cyanoacrylate glue. In two mice, red fluorescent beads (4-μm 
FluoSpheres, Thermo Fisher Scientific) suspended in sterile cortex buffer (diluted 
1:100) were placed between the coverslip and the brain surface to perform 
real-time movement correction. Post-surgery analgesia (buprenorphine 0.1 mg 
kg−1) was administered before anaesthesia reversal via atipamezole (3.75 mg kg−1), 
flumazenil (0.75 mg kg−1) and naloxone (1.8 mg kg−1). Mice were group housed and 
kept on a 12-h light/dark cycle with food and water ad libitum.

In vivo two-photon imaging of head-fixed mice. Two-photon imaging was 
performed with an AOL 3D two-photon microscope that enables high-speed 3D 
random access pointing and scanning27,55,56 and real-time movement-corrected 
imaging57. The excitation source was a Ti-sapphire laser (Chameleon Vision, 
Coherent) tuned to 920 nm, and the optical configuration was set up to underfill a 
×20 (1.0 NA, Olympus) objective. This gave an illumination NA of 0.6–0.7 and a 
two-photon point spread function of 0.69 ± 0.04 μm in x–y and 6.54 ± 0.27 μm in 
z (full width half maxima, mean ± s.d.) as previously reported57. The illumination 
power was controlled with a Pockels Cell (Model 302CE, Conoptics) and was 
typically 60–70 mW at the back aperture of the objective. A two-channel data 
acquisition system was deployed using GaAsP photomultiplier tubes (H7422, 
Hamamatsu) in both the red and green channels. Photomultiplier tube outputs 
were digitized using high-speed 800-Msps analog-to-digital converters (NI-5772, 
National Instruments) via 200-MHz Pre-Amplifiers (Series DHPCA 100/200 MHz, 
FEMTO). A digital acquisition FPGA board (NI FlexRIO–7966R, National 
Instruments) was used to downsample the signals by integrating each pixel before 
sending frames to the host PC via the National Instruments PXIe interface. The 3D 
imaging was controlled with the custom SilverLab 3D imaging software (LabVIEW, 
National Instruments). The microscope user interface acted as a master for the 
video acquisition system.

Two weeks after surgery, animals were habituated to the recording apparatus 
by head restraining them on a cylindrical Styrofoam wheel for 30 min per day 
during three consecutive days before imaging neural activity. A reference bead 
(0.2 μm or 4 μm) was identified within the imaging volume (175 × 175 × 116 ± 6 μm, 
n = 13) and imaged with a voxel dwell time of 50 ns. Real-time tracking of brain 
movement and real-time movement-corrected imaging was performed in two 
dimensions (2D) with a 500-Hz update rate57. To control for axial brain movement 
during behavior, we recorded the bead fluorescence during AS and QW. There was 
no significant correlation between ΔF/F of the bead fluorescence and locomotion 
(correlation coefficient 0.06 ± 0.06, n = 13, N = 5). Next, a high-resolution 
movement-corrected z-stack image was performed by AOL raster scan imaging 

through the molecular layer. Elongated x–y patch regions of interest (ROIs) were 
then defined in a staircase arrangement at different depths from the pia, with 
their long axis orthogonal to the direction of the parallel fibers (Fig. 1a). Imaging 
patches were typically spaced 10–12 μm apart in z. This minimized the chance of 
recording from the same parallel fiber in different patches. The line scans making 
up each patch had a voxel dwell time of 200–400 ns. Imaging was performed for 
sets of 20-s trials lasting 5 min where mice were free to run on the wheel.

Image processing. Imaging data for each patch were extracted and exported to 
TIFF files by using in-house software written in LabVIEW (National Instruments). 
The analysis was then performed using scripts and toolboxes in MATLAB. Before 
extracting calcium data from patches, post hoc movement correction was used to 
correct for any residual movement in the images58. In one experiment, where there 
was more movement, ten pixels were trimmed from each edge of each patch to 
improve post hoc movement correction. As shown in Extended Data Fig. 6d, we 
quantified residual movement in image patches by quantifying the mean square 
displacement of an imaged bead after post hoc movement correction in a 500-ms 
time window centered around the onset of locomotion speed (as determined in 
Extended Data Fig. 4a).

Measurement of whisker position and locomotion. Two video cameras with 
far infrared LED illumination were used to monitor the face and whiskers. Facial 
areas were recorded at 1280 × 960 resolution at 30 Hz (The Imaging Source), 
whereas whisking was recorded at 644 × 484 resolution at 300 Hz (Mako). All 
behavioral data were acquired with the SilverLab custom software running under 
LabVIEW (National Instruments). Whisker position was extracted from videos 
using DeepLabCut59 by tracking three markers on a single whisker. Whisker angle 
was measured as the angle between the linear fit between the three markers and 
a line parallel to the whisker pad of the mouse. The angle was de-noised using 
a 30-Hz 4th order forward–backward Butterworth filter. Whisker set point was 
determined by Gaussian smoothing the whisker angle using a 500-ms window. 
Whisker amplitude was calculated as the magnitude of the Hilbert transform of 
the whisker angle after being band-pass filtered using a 4th order Butterworth 
filter from 8 Hz to 30 Hz60,61. Besides the locomotion speed of the mice recorded 
every 2 ms with a rotary encoder, a wheel motion index was calculated using 
a small ROI selected on the wheel, as the average difference in pixel values 
between successive frames62, smoothed over 200 ms. This provides an estimate of 
wheel motion without distinguishing between forward movement (for example, 
running) or backward movement (for example, startle responses). Datasets with no 
locomotion or whisking were not analyzed as no comparison could be made with 
the representation of the active state in the same population of parallel fibers.

Calcium imaging processing. Parallel fiber varicosities were identified in imaged 
patches by adapting signal detection tools from a publicly available toolbox63. In 
brief, following Zhou et al.64, we identified varicosities by first identifying seed 
pixels, defined as the pixels having a peak correlation with their neighboring 
pixels. To remove spurious seed pixels due to background noise, we required 
that this correlation be above a threshold that was determined from the bimodal 
distribution of pixel correlations over all data. Corresponding spatial filters were 
then detected by using linear regression to fit the fluorescence of all pixels within 
a local region (1.7 × 1.7 μm) to the fluorescence trace of the seed pixel for the 
varicosity. Masks were then defined by thresholding the resulting spatial filter 
weights at 80% of their total value and trimming overlapping pixels. However, 
because there was very little overlap between the spatial filters of different 
varicosities, we did not proceed with de-mixing the fluorescence data63. For quality 
control, we removed varicosities with an SNR below the 95th percentile of the 
distribution of SNRs of varicosity-sized regions within the neuropil. Following 
Pnevmatikakis et al.63, the SNR was defined as the peak ΔF/F for that varicosity 
normalized by the noise standard deviation (estimated from the power spectrum). 
In addition to this, a small number of varicosities (2%) were manually removed 
after visual inspection for artifacts. Neuropil fluorescence was calculated using 
masks of size 20 × 20 μm, excluding any pixel within twice the average varicosity 
radius. We also excluded pixels whose correlation with their neighboring pixels  
was above the 95th percentile to avoid bleaching in localized saturated regions.  
The resulting neuropil signal was small and accounted for only 4.6 ± 4.5 × 10−4 %  
of the variance of the activity of the corresponding varicosity (Supplementary 
Fig. 4). As a result, this was not subtracted to avoid inflating noise due to low 
baseline fluorescence. ΔF/F was then calculated as follows: (F−F0)

F0  where F is raw 
fluorescence (averaged over all pixels within the varicosity or within all varicosities 
corresponding to the same putative axon after grouping procedure described 
below), and F0 is the baseline fluorescence (10th percentile of F).

Varicosity grouping into putative axons. Comparison of the normalized 
fluorescence transients (ΔF/F) revealed that some varicosities exhibited highly 
correlated activity. To isolate responses from putative parallel fiber axons, we 
grouped varicosities using a semi-automated procedure based on correlations in 
functional activity as well as spatial alignment along the overall direction taken 
by the parallel fiber population (Extended Data Fig. 2a). For each experiment, we 
first obtained the average fiber direction by hand tracing small segments of parallel 
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fibers observed in the z-stacks in ImageJ. Next, within each patch, we iteratively 
grouped a pair of candidate varicosities (or putative parallel fibers) into a new 
putative axon if the following three criteria were satisfied:

	1.	 Spatial arrangement. We estimated the putative parallel fiber connecting the 
candidate varicosities as the best linear fit to the locations of the identified 
varicosities. If any of the candidate varicosities were farther than 1 μm from 
the fiber, the putative parallel fiber was rejected. We also rejected putative 
parallel fibers that were orientated at an angle greater than 27° of the  
average fiber direction for that experiment (this number was estimated as two 
standard deviations of fiber angles across all datasets) (Extended Data  
Fig. 2a,b).

	2.	 Functional correlation. We required that the total activity (ΔF/F) correlation 
between candidate varicosities be greater than a threshold value. For this 
threshold value, we required a null distribution for the correlation between 
varicosities on different parallel fibers. For this null distribution, we used the 
distribution of correlations between varicosities on different patches of the 
same experiment (Extended Data Fig. 2c), as they were unlikely to be on the 
same parallel fiber due to our staggered patch arrangement. For the threshold 
correlation, we took the 95th percentile of this distribution.

	3.	 Deviation from linear scaling. If the candidate varicosities belong to the same 
parallel fiber, and assuming they are in the linear regime of GCaMP6f, their 
activity would be a scaled version of each other. We estimated the deviation 
from linear scaling as the minimum projected variance of the data. We denote 
this projection vector as v (Extended Data Fig. 2d–i; we also tried using 
the vector orthogonal to the vector obtained from linear regression, which 
yielded similar results). To take into account varying noise levels, we normal-
ized this quantity by the variance of the distribution of baseline fluorescence 
projected onto v. The baseline distribution, which presumably represented 
noise, was obtained by fitting a mixture of two 2D Gaussians to the activity of 
the varicosities and taking the lower mean Gaussian. Finally, we rejected all 
pairs for which this ‘linear deviation ratio’ exceeded 1.5.

After this automated procedure, we visually inspected all data for clear 
misclassifications, which we corrected manually, including misses (due to sparsely 
active varicosities whose low event rates precluded the second condition—6.0% of 
total groupings) and false positives (due to varicosities with visually distinct events 
missed by the third condition—16.4% of total groupings). This resulted in an 
average of 1.27 varicosities per putative parallel fiber. To cross-check our grouping 
algorithm, we measured the distance between neighboring varicosities within each 
putative axon comprising more than one identified varicosity, as this was not used 
as a criterion in our procedure, and found that it was consistent with the mean 
and range of intervaricosity distances previously reported28 (Fig. 1d). The analysis 
was repeated for every patch placed in the volume for the recording session. All 
putative axons from the different patches were used for further analysis.

GrC somatic calcium analysis. We performed GrC somatic two-photon imaging 
in two mice used for the parallel fiber imaging. As GrCs are densely packed, we 
imaged a single plane in the GrC layer with a field of view of 250 μm rather than 
using patches at different depths. To identify GrC somata and extract their ΔF/F 
traces, we used the software package suite2p65, which is available on GitHub 
(https://github.com/cortex-lab/Suite2P).

Identification of the AS and QW periods. We labeled time points as belonging to 
periods of AS and QW based on behavioral recordings. We first smoothed whisker 
amplitude and wheel motion index over 500 ms, centered around their modes 
and normalized by their standard deviation. Time points in which these assays 
of locomotion and whisking variables were both below 0.1 were defined as QW; 
periods in which they were above 0.1 for at least 3 s were defined as AS. Note that 
the criteria are purposefully strict to avoid mislabeling.

Definition of positively and negatively modulated parallel fibers. For each 
parallel fiber, we calculated the difference between the average ΔF/F during AS and 
the average ΔF/F during QW. We then calculated the two-sided P value compared 
to a null distribution obtained with 1,000 trials in which we shuffled time in 1-s 
blocks. Positively and negatively modulated parallel fibers were defined by having 
a significant increase or decrease in mean ΔF/F during AS compared to QW, when 
compared to the shuffle control (P < 0.05).

Analysis of the spatial structure of parallel fiber activity. To analyze spatial 
structure in parallel fiber activity, we calculated the correlation coefficient of 
parallel fiber ΔF/F over the full recording as well as the distance between fibers. 
The x–y distance (Fig. 2c and Extended Data Fig. 7b) was calculated for each patch 
within an experiment. For each putative axon, we first found the centroid of the 
spatial filter (comprising the ROIs for each varicosity associated with that axon) 
and then projected each centroid onto the dimension orthogonal to the average 
fiber direction for that experiment. The distance between the projected centroids 
was then the distance between fibers in the same patch. For the x–y–z distance 
(Extended Data Fig. 7c), we instead considered all pairs of parallel fibers in an 

experiment (across all patches) by projecting the centroids of each parallel fiber 
onto the plane orthogonal to the average fiber direction and calculating the 2D 
distance between centroids. In the nearest-neighbor (NN) analysis, NN distances 
were calculated as the average distance of each positively modulated parallel 
fiber to the nearest positively modulated parallel fiber (similarly for negatively 
modulated). In the shuffle control, positively modulated (or negatively modulated) 
labels were randomly shuffled.

Identification of locomotion onset and analysis of activity. We calculated the 
correlations between parallel fibers during locomotion onsets (Extended Data 
Fig. 4). Locomotion was defined as any time point in which wheel speed exceeded 
1.5 cm s−1. Locomotion onsets were identified by finding locomotion time points 
with a gap of at least 500 ms from the previous instance of locomotion. The 
correlation coefficient between parallel fibers was calculated after concatenating 
1-s periods centered around every locomotion onset in the experiment. To 
compare these defined behaviors against the multiple behaviors encompassed in 
the AS, we also calculated the correlation coefficient during the same number of 
time points randomly selected within the AS.

Analysis of manifolds. To analyze the structure of the activity space associated 
with different behaviors, we defined the AS manifold as the set of neural activity 
patterns during time points labeled as AS (similarly for the QW representation). 
Unlabeled time points were excluded from these definitions. For visualization 
purposes only, in some figures we additionally labeled all time points (including 
unlabeled time points) according to a continuous AS–QW scale (Figs. 3b and 4b  
and Extended Data Fig. 8). To do this, we projected the data onto the ‘state 
dimension’ (the vector separating the means of the AS versus QW representations) 
and z-scored and capped the resulting value between −1 and 1.

The orthogonality of the manifolds was assessed by measuring the first 
principal angle between the QW and AS subspaces. To calculate the principal 
angle, we first found a planar embedding for both AS and QW manifolds. We used 
singular value decomposition to find a rank-2 approximation to the population 
activity during the AS as XAS ≈ UASSASVAS (similarly for QW). The first principal 
angle between UAS and UQW is given by66

Ur
QW = UQW − U′

ASUASUQW

θ = arcsin
(

σmax
(

Ur
QW

))

where σmax
(

Ur
QW

)

 is the maximum singular value of Ur
QW  (the residual of UQW that 

is orthogonal to UAS). We calculated θ using the function subspace.m in MATLAB. 
If UQW and UAS are orthogonal, the residual Ur

QW  and thus the angle θ will be 
large. In a vector space of high extrinsic dimensionality (that is, large number of 
neurons), random vectors are likely to be orthogonal. Therefore, to ensure that 
the orthogonality of the AS and QW subspaces is a feature of the data and not due 
to added measurement noise, we compared to a control in which we first shuffled 
the time indices of the data in 1-s blocks and then calculated the principal angle 
between the first and second halves of these random data. This shuffling breaks the 
structure of the two defined manifolds so that they no longer represent different 
behavioral states. For manifold analyses, datasets with fewer than 100 axons  
were excluded.

Linear regression. We used cross-validated linear regression to predict a 
behavioral variable (whisker set point or locomotion speed) based either on the 
first K PCs (principal component regression) or on parallel fiber population 
activity (lasso regression). For training, we used 80% of the data (in random 
1-s blocks) and calculated the error as the fraction of unexplained variance of 
the behavioral variable in the held-out data (Fig. 5a,b). This was repeated for 
ten random samples of training/test data to obtain the average cross-validated 
unexplained variance. For principal component regression, the ‘optimal’ K 
was defined as the number of PCs that minimized this average cross-validated 
unexplained variance (Fig. 5b). We used a similar protocol for lasso regression, 
instead varying the penalty from λ = 10−3 to 1. To determine whether GrC 
representations are distributed across the population, we quantified the number 
of parallel fibers with a non-zero coefficient at the optimal λ. For comparison, we 
also calculated the unexplained variance when regressing against a single neuron 
(‘best’ parallel fiber—that is, which minimized the unexplained variance). Finally, 
to quantify QW-only decoding, we repeated principal component regression 
constraining both the test data and the training data to QW periods (taking the 
optimal K). For a control, we compared the performance of the QW-only decoder 
to one in which the time stamps of the training data were randomly sampled 
as 1-s blocks from all time points in the experiment (combining both QW and 
AS periods). The shuffled decoder was tested on the same held-out data as the 
QW-only decoder.

Dimensionality analysis. We used a bicross-validated version of PCA to infer the 
dimensionality of neural representations during spontaneous behavior16,18,64,67. To 
control for differing population sizes across experiments, we randomly subsampled 
a fixed number of parallel fibers from the population. We randomly selected 80% 
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of the data (training data Xtr, chosen in 1-s blocks) to calculate the first K PCs, 
resulting in the following low-rank approximation:

Xtr
= UStrVtr

To cross-validate these PCs, we split the remaining 20% of the test data into a 
second partition of training neurons (Xte

1 , 80% of the population) and test neurons 
(Xte

2 ). The low-rank matrix decomposition for the test data can be written in block 
format:

[

Xte
1 ;X

te
2
]

= [U1;U2] SteVte

We use the upper block to estimate the latent dynamics (SteVte) via linear 
regression and use the lower block to predict Xte

2 . Note that this linear regression 
step is only well defined if the latent dynamics is shared across neurons. The 
lower bound of the dimensionality is the number of PCs required to maximize the 
explained variance of Xte

2 . For each experiment, this procedure was repeated for 
ten random samples of the population as well as random selections of training/test 
data. The extrapolated dimensionality was then inferred as the number of PCs that 
would be required to attain 100% variance explained, using linear extrapolation 
across experiments. To validate this procedure, we tested a simple model (Extended 
Data Fig. 10) in which we used exponentially distributed singular values (S) and 
random orthonormal vectors (U and V) to create a 60-dimensional representation 
embedded in a space of 300 (extrinsic) dimensions. We then tested our procedure 
with different amounts of zero-mean normally distributed noise, verifying that the 
lower bound of the dimensionality increases linearly with the maximum variance 
explained (Extended Data Fig. 10).

Statistical analyses. All statistical tests were two tailed. All error bars indicate 
s.e.m. Throughout the manuscript, n refers to the number of experiments, and  
N refers to the number of animals.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data presented in the main figures and in extended data figures are available in the 
data source files or on FigShare (https://doi.org/10.5522/04/14482977). Raw data 
are available upon reasonable request, owing to their size. Source data are provided 
with this paper.

Code availability
The SilverLab LabVIEW Imaging Software is available on GitHub at https://github.
com/SilverLabUCL/SilverLab-Microscope-Software. Analysis scripts are available 
at https://github.com/SilverLabUCL/ParallelFibres.
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Extended Data Fig. 1 | Expression of GCaMP6f in granule cells in Slc17-a7 Cre mice. a, Schematic representing a dorsal view of the cerebellum. The black 
circle represents the 5 mm cranial window above Crus I. Coloured blobs show the approximate location of the virus injection and GCaMP6f expression 
for the animals in this study. b, Top view of a cranial window above Crus I. The green channel (left) shows expression of GCaMP6f in lobule Crus I. Green 
fluorescence is widespread due to the spatial extent of parallel fiber projections. The red channel (right), shows a clump of retrobeads at the injection site 
(arrow). c, Confocal tile scanning of a coronal section of Crus I where granule cells (GrCs) were transfected with GCaMP6f. Note the absence of labelled 
cell bodies in the molecular and Purkinje cell layers. d, Confocal image with a smaller field of view to show GCaMP6f expression in GrC somata and axons. 
Labels: Cr. 1: Crus1 lobule; Cr. 2: Crus2; lob. VI: cerebellar lobule VI in the vermis, Simp.: simplex lobule, PM: paramedian lobule, ML: molecular layer,  
PC: Purkinje cell, GrCL: GrC layer.
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Extended Data Fig. 2 | Method of grouping varicosities into putative axons. a, Strings of bright varicosities from active axons were traced by hand to 
obtain orientations of parallel fiber segments. Inset shows the histogram of the angle of individual parallel fiber segments from the average parallel fiber 
orientation (n = 13, N = 5). White arrow indicates average parallel fiber orientation for this experiment, and purple the acceptance angle for parallel fiber 
identification (two standard deviations of the distribution in the inset). b, Examples of candidate varicosity groupings that pass (left, green box, each side 
13.7 μm) and fail (right, red box) the first grouping criterion. Varicosities indicated by yellow contours. Title indicates angle between candidate parallel 
fiber given by linear fit (dotted white line) and the average parallel fiber direction for that experiment (white arrow). c, Example histogram of correlation 
coefficient for pairs of varicosities in different patches, used for the second grouping criterion. Dotted line indicates the threshold correlation (95th 
percentile) for this experiment. d-f, Example of correlated varicosities that pass the third grouping criterion. d, Example activity of the two varicosities 
(r = 0.74). e, Activity of varicosity 1 plotted against activity of varicosity 2 (grey). Blue line indicates fit from linear regression. Black circle indicates baseline 
activity distribution (95% confidence interval). Red line indicates vector v onto which activity is projected to calculate the linear deviation ratio for the third 
criterion. f, Histogram of activity from (e) projected onto v (grey histogram), and analytically calculated distribution of the baseline distribution projected 
onto v (orange curve). The ratio of the variances of these distributions is used for the third criterion (linear deviation ratio = 1.03). g-i, Same as d-f for a 
pair of varicosities that fail the third grouping criterion (r = 0.69, linear deviation ratio = 3.12). Red arrows in (g) indicate transients that are missed in one 
varicosity. Red arrow in (i) shows the large tail of the distribution.
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Extended Data Fig. 3 | Correlated locomotion speed and whisking during spontaneous behaviour. a, Left: Example traces of different behavioural 
variables: whisker set point (WSP), whisking amplitude (WA), wheel motion index (WMI), and locomotion speed (LS). Right: Histograms of correlations 
of parallel fiber Ca2+ activity (ΔF/F) with WSP, WA, WMI and LS (n = 13, N = 5). Red and blue indicate parallel fibers that are positively or negatively 
correlated with each behavioural variable respectively (p < 0.05, two-sided shuffle test). Grey indicates parallel fibers that are not significantly correlated 
with that behaviour. Pie charts reveal a similar fraction of positively modulated (PM, 58–67%), negatively modulated (NM, 16–22%) and non-modulated 
GrCs (13–20%) regardless of behavioural variable. b, Correlation between all pairs of behavioural variables for each experiment (grey circles). Black bars 
indicate mean across experiments (p = 2.4 × 10−4 for all pairs of behavioural variables, two-sided Wilcoxon signed rank test, n = 13, N = 5). Error bars 
indicate s.e.m.
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Extended Data Fig. 4 | Pairwise correlation and spatial dependence of parallel fiber correlations at the onset of locomotion. a, ΔF/F traces of positively 
modulated (PM) and negatively modulated (NM) parallel fibers in grey (top) together with locomotion speed and bead fluorescence, from a single 
experiment aligned at locomotion onset. Bottom: Grey indicates individual traces and the black indicates the mean. b, Example experiment showing 
temporal dispersion of parallel fiber activation during locomotion onsets. Top and middle panels show average ΔF/F (zscored) of PM and NM parallel 
fibers calculated over locomotion onsets. Locomotion onsets were randomly split into training (50%) and test (50%) data, and parallel fibers were 
sorted according to the time lag of their peak correlation (PM) or anticorrelation (NM) with locomotion speed during the training data. Bottom panels 
show average locomotion speed during training and test onsets. c, Distribution of pairwise correlations for pairs of positively (black, top) and negatively 
(black, bottom) modulated parallel fibers during 1 s interval surrounding locomotion onsets (n = 12, N = 5). Red and blue curves indicate distributions of 
correlations during random periods in the active state (for positively modulated and negatively modulated parallel fiber pairs, respectively). Arrowheads 
represent the means. d, Relationship between correlations between putative axons at locomotion onsets as a function of inter-fiber distance, for positively 
modulated pairs (red), negatively modulated pairs (blue), and all pairs (grey; n = 12, N = 5). Shaded regions indicate s.e.m. Thick lines indicate double 
exponential fit to the data.
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Extended Data Fig. 5 | Non-modulated parallel fibers are not noisier than modulated parallel fibers. a, Example of three non-modulated parallel fibers 
(top) compared to positively modulated and negatively modulated parallel fibers (same example shown in Fig. 1e for full experiment). Magenta/cyan 
indicates AS/QW. b, Distribution of signal-to-noise ratios (SNRs; Methods) for all non-modulated parallel fibers (top), as well as positively modulated 
(centre) and negatively modulated parallel fibers (bottom) (n = 13, N = 5).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Fraction of positively, negatively and non-modulated parallel fibers across experiments. Histograms of changes in ΔF/F response 
during the AS relative to QW across all parallel fibers for all 13 experiments across 5 mice. Positively modulated (red) and negatively modulated (blue) 
parallel fibers, as well as parallel fibers which were not significantly modulated by behavioural state (grey). Pie charts indicate the proportion of each class 
across experiments.
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Extended Data Fig. 7 | Spatial profile of parallel fiber correlations. a, Schematic illustrating how distances between parallel fibers were calculated. Left: 
example of two patches with three parallel fibers, each with different numbers of varicosities. Black unidirectional arrow indicates average parallel fiber 
direction. To calculate the distance between parallel fibers, the position of the centre of its varicosities is projected onto the dimension orthogonal to the 
average fiber vector (red line). The XY distance (dXY) is the distance in the projected dimension. Right: Same schematic, rotated to show Z-dimension. The 
XYZ distance (dXYZ) is the distance in the projection plane (red). b and c, Correlations between varicosities or putative axons as a function of inter-fiber 
distance, for positively modulated pairs (red), negatively modulated pairs (blue), and all pairs (grey; n = 13, N = 5). Shaded regions indicate s.e.m. Thick 
lines indicate double exponential fit to the data. b, Correlations and XY distances (dXY) for ungrouped varicosities (within the same patch). Note similar 
trend to grouped data, except for stronger peak at small distances (< 2 μm) (c.f. Figure 1c). c, Correlations and XYZ distances (dXYZ) for putative axons 
across all patches.
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Extended Data Fig. 8 | Manifold structure across different mice. Parallel fiber population activity visualized by plotting first three principal components. 
Each panel indicates a different mouse (N = 5 in combination with Fig. 3b). Colour indicates projection along the quiet wakefulness (QW; cyan) to active 
state (AS; magenta) state dimension.
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Extended Data Fig. 9 | Distributed representation of locomotion speed. a, Average cross-validated unexplained variance for locomotion speed based on 
the first principal component (PC), the first 10 PCs, and the optimal number of PCs. Each circle indicates a different experiment (n = 11, N = 5; two-sided 
Wilcoxon signed rank test). b, Average cross-validated unexplained variance for locomotion speed based on the best parallel fiber (PF) for each recording 
and for lasso regression on the population activity (n = 11, N = 5; two-sided Wilcoxon signed rank test). c, Range of optimal number of parallel fibers to 
minimize the cross-validated unexplained variance. Each marker represents a different experiment. d, Correlation between the lasso regression coefficients 
of the optimal decoders for locomotion speed and for whisker set point, plotted against average decoder error (unexplained variance averaged for speed 
and whisker set point; two-sided Spearman correlation: r = −0.73, p = 0.02; n = 11, N = 5). For each decoder, regression coefficients were averaged over  
10 random samples of training/test data. Error bars in a and b denote s.e.m.
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Extended Data Fig. 10 | Lower bound of dimensionality increases linearly with maximum variance explained in simulated data. We tested our procedure 
for estimating dimensionality in a simple model of random 60-dimensional representations in populations of 300 neurons corrupted with increasing levels 
of noise. Each black line represents the mean variance explained for a fixed standard deviation of the noise distribution. Shading represents s.e.m. across 
different random representations. Inset: linear relationship between lower bound of the dimensionality and the maximum variance explained.
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Data collection The SilverLab LabVIEW (2017) Imaging Software for controlling the 3D acousto-optic lens two photon microscope used is available on GitHub 

at https://github.com/SilverLabUCL/SilverLab-Microscope-Software. 

Data analysis The analysis was performed using scripts and toolboxes in MATLAB 2019b. Analysis scripts are available at https://github.com/SilverLabUCL/

ParallelFibres. Post-hoc 2D movement correction analysis in mice was done using the algorithm described in Manuel Guizar-Sicairos, Samuel 

T. Thurman, and James R. Fienup, "Efficient subpixel image registration algorithms," Opt. Lett. 33, 156-158 (2008). Mouse whisker tracking 

was performed with DeepLabCut 2.1, algorithms described in Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body 

parts with deep learning. Nature Neuroscience 21, 1281–1289 (2018). For somatic calcium imaging analysis we used the software package 

Suite2P (github.com/cortex-lab/Suite2P) described in  Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon 

microscopy. 
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Key analyzed data shown in the figures is available in the source data files and on FigShare (https://doi.org/10.5522/04/14482977). The remainder and raw data will 

be available on request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The specific sample size for each analysis is summarised in the figure legends, main text and methods. Throughout the manuscript, n refers to 

the number of experiments and N to the number of animals for each analysis. A sample size of 5 animals was chosen to ensure the findings 

were reproducible, while  minimising animal numbers. The sample size for some analyses varied depending on pre-established criteria which 

are detailed in detailed in Table 1.

Data exclusions Any experiment in which there was no running and whisking was excluded as we could not analyze the active state. One animal was excluded 

from all the analysis due to an incomplete wheel speed recording. This resulted in 13 experiments over 5 mice. The number of experiments 

and animals used for each analysis, together with any exclusion criterion defined during our analysis are detailed in Table 1.

Replication The experiments were performed on 5 mice, which showed similar results. Extended Data Figure 6 and 8 demonstrate that our findings were 

consistent across experimental sessions and animals.

Randomization Calcium imaging was performed in the same cerebellar lobule (Crus I) across mice. The imaged area randomly placed within the lobule in each 

animal. No randomization was performed as experiments were exploratory in nature and did not involve a effect and control groups. Controls 

for measured parameters, such as decoding, consisted of shuffled datasets.  

Blinding No blinding was performed as experiments were exploratory in nature and controls consisted of shuffled datasets. 
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and female adults (3-5 month old) were used for this study. Mice were housed in individual cages in an animal facility with an 

ambient temperature of 21°C and 55% humidity on a 12h light/dark cycle (7am-7pm) with 1h dawn. The mouse line: Slc17a7-IRES-

Cre provided by Adam Hantmann (Janelia Research Campus, USA) was used for all experiments.
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Wild animals No wild animals were used in this study.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All procedures were approved by the UCL Animal Welfare and Ethical Review Body and carried out under licence from the UK Home 

Office in accordance with the United Kingdom Animals (Scientific Procedures) Act, 1986.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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