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SUMMARY
Inhibitory neurons orchestrate the activity of excitatory neurons and play key roles in circuit function.
Although individual interneurons have been studied extensively, little is known about their properties at
the population level. Using random-access 3D two-photonmicroscopy, we imaged local populations of cere-
bellar Golgi cells (GoCs), which deliver inhibition to granule cells. We show that population activity is orga-
nized into multiple modes during spontaneous behaviors. A slow, network-wide common modulation of
GoC activity correlates with the level of whisking and locomotion, while faster (<1 s) differential population
activity, arising from spatially mixed heterogeneous GoC responses, encodes more precise information. A
biologically detailed GoC circuit model reproduced the common population mode and the dimensionality
observed experimentally, but these properties disappeared when electrical coupling was removed. Our re-
sults establish that local GoC circuits exhibit multidimensional activity patterns that could be used for inhi-
bition-mediated adaptive gain control and spatiotemporal patterning of downstream granule cells.
INTRODUCTION

Inhibitory neurons play key roles in information processing in

neural circuits, despite forming a relatively small minority

(�10%–30% neocortex and <6% in regions of the cerebellar cor-

tex) (Hendry et al., 1987; Korbo et al., 1993). They control the gain

and offset of downstream neurons (Mitchell and Silver, 2003; Pre-

scott and De Koninck, 2003), shape neuronal selectivity (Grien-

berger et al., 2017; Liu et al., 2011; Priebe and Ferster, 2008),

and control the precision of spike timing (Duguid et al., 2012;

Pouille and Scanziani, 2001; Swadlow, 2003). Studies of individ-

ual neurons have shown that different types of inhibitory interneu-

rons exhibit a range of cellular and synaptic properties that sup-

port these diverse functional roles (Isaacson and Scanziani,

2011; Kepecs and Fishell, 2014; Tremblay et al., 2016). By

contrast,much less is known about the functional properties of in-

terneurons at the population level as their low density has made it

difficult to measure population activity with conventional

methods. However, recent advances in microscopy and electro-

physiological probes have opened up the possibility of studying

the properties of local inhibitory circuits (Geiller et al., 2020;

Khan et al., 2018; Ma et al., 2020; Najafi et al., 2020).

Golgi cells (GoC), the main inhibitory interneuron in the cere-

bellar input layer, receive excitation from mossy fibers and

granule cells (GrCs) (Cesana et al., 2013; Dieudonné, 1998;

Eccles et al., 1966; Kanichay and Silver, 2008). GoCs modulate
Neuron 109, 1739–1753,
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the threshold and gain of vast numbers of downstream GrCs

(Billings et al., 2014; Mitchell and Silver, 2003; Rothman et al.,

2009), as well as govern their spike timing (Duguid et al., 2015)

through feedforward and feedback inhibition. These functions

are thought to conserve information, make sparse and decorre-

late GrC activity, and introduce spatiotemporal patterns at the

population level, aiding pattern separation (Cayco-Gajic and Sil-

ver, 2019) and temporal processing (D’Angelo and De Zeeuw,

2009; Mapelli et al., 2010). Although sensory-evoked responses

of individual GoCs (Duguid et al., 2015; Edgley and Lidierth,

1987; Holtzman et al., 2006; van Kan et al., 1993; Vos et al.,

2000) have been studied in vivo, experimental evidence for

how their activity is organized at the population level is lacking.

GoCs are electrically coupled together (Dugué et al., 2009) via

connexin 36 gap junctions (GJs), formed between the dendrites

of neighboring cells (Szoboszlay et al., 2016; Vervaeke et al.,

2010, 2012). Computational models of GoC circuits suggest

that excitatory synaptic input can either synchronize or de-

synchronize population activity (Dugué et al., 2009; Maex

et al., 2000; Vervaeke et al., 2010). These model-based predic-

tions are consistent with in vivo experimental observations of

synchrony between pairs of GoCs (Dugué et al., 2009; van Welie

et al., 2016; Vos et al., 1999) and local field potential (LFP) re-

cordings showing that coherent oscillatory activity only occurs

during immobile states (Hartmann and Bower, 1998), which

could reflect differing levels of synchrony in the GoC network.
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Figure 1. Population imaging of cerebellar Golgi cells (GoCs)
(A) Left: schematic of mouse brain with cerebellar regions Crus I/II (cyan) and Lobule IV/V (magenta). Example viral vector injection site with red microbeads and

overlaid GCaMP6f fluorescence in white; CI, Crus I; CII, Crus II. Right: example plane with GCaMP6f-expressing GoCs. Scale bar, 50 mm.

(B) Top: behavioral setup for 3D 2-photon imaging of head-fixed mouse on cylindrical wheel. Example frames from whisker and front video cameras and offline

tracking of multiple single whiskers. Colors indicate 12 different points tracked. Bottom: time course of locomotion (Loco), whisker motion index (WMI), whisker

angle (angle), whisking amplitude (WAmp), and whisker set point (WSP) from an example session.

(C) Left: regions of interest (ROIs) centered on GoC somata in Crus I/II located within the imaging volume, to be selectively imaged with patch scanning. Color bar

indicates depth (mm) from the top of the imaged stack. Right: montage of mean images of the GoC soma from each ROI.

(D) DF/F traces for a single imaging session, for each of the ROIs in (C), arranged by depth together with the Loco and WMI. Timing of air puff on whiskers (puff),

black triangles. Bottom: expanded timescale for 4 example neurons. Scale bars, 100% DF/F and 40 s.

(E) Pairwise correlation matrix for population activity in (D).

(F) Distribution of pairwise correlation r (DF/F) across all experiments for both cerebellar lobules (n = 7,669 pairs/N = 5 animals for Crus, n = 1,199/N = 4 for Lob

IV/V).

(G) Relationship between activity correlation (r, for DF/F) and distance between GoC pairs. Black symbols indicate the binned population mean, shaded area

denotes standard deviation (SD), red line indicates linear fit (n = 8,868 pairs/N = 9 animals).

See also Figures S1–S3.
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Quantifying GoC population dynamics in awake animals is there-

fore key for understanding how this electrically coupled inhibi-

tory network can regulate downstream activity on different

spatiotemporal scales.

RESULTS

To investigate population dynamics in local GoC circuits, we

monitored their activity with GCaMP6f (Chen et al., 2013), which
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was selectively expressed in the majority of cerebellar GoCs in

the injected region (Figures 1A and S1). We targeted two cere-

bellar lobules that differ in the composition of their inputs, phylo-

genetic history, and function (Apps et al., 2018; Stoodley and

Schmahmann, 2010)—Crus I/II in the cerebellar hemisphere,

which in rodents primarily receives whisking and other orofacial

sensorimotor inputs (Van Ham and Yeo, 1992; Proville et al.,

2014; Shambes et al., 1978), and lobule (Lob) IV/V in the cere-

bellar vermis, which receives inputs from the spinocerebellar



Figure 2. Slow network-wide activation of GoCs

(A) Illustration of how correlations between GoCs were quantified by decomposing total covariance into contributions from different modes.

(B) Illustration of extraction of population modes from neural activity using principal-component analysis. Time-varying neural activity (left), the loading matrix

(center), and activity along population modes (right). The loading matrix gives the weight of mode k for neuron n.

(C) Distribution of eigenvalues for the population covariance matrix (for DF/F), normalized by the maximum eigenvalue in each session. Black lines are individual

sessions (n = 21 sessions, N = 9 mice), solid red line is the mean across sessions. Inset shows the expanded axis without population mode 1 (PM1).

(D) Cross-validated explained variance by first PM alone for DF/F (solid) and events (open) in Crus I/II (cyan) and Lob IV/V (magenta). Points indicate mean across

neurons on an individual session; shaded bar and error bar indicate mean across sessions and SEM, respectively.

(E) Distribution of loadings for top mode (PM1, n = 582 neurons/N = 9).

(F) Autocorrelogram for the first 5 populationmodes (darkest PM1, lightest PM5); shaded areas denote SEMacross sessions. Gray area at bottom shows the 95%

confidence interval for the time-shuffled control. p value reported at 5-s lag (PM1 versus non-PM1); Wilcoxon signed rank test, n = 21/N = 9.

See also Figure S3.
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tract and is involved in posture and locomotion (Chambers and

Sprague, 1955; Luo et al., 2017). Mice were head fixed and

placed on a treadmill, where they were free to perform a range

of behaviors. We focused on two voluntary motor behaviors,

locomotion and whisking, and on responses to an unexpected,

brief (100 ms) minimally aversive air puff on ipsilateral whiskers

(Figure 1B). Population activity was monitored with an

acousto-optic lens (AOL) three-dimensional (3D) 2-photon mi-

croscope (Nadella et al., 2016) by rapidly and selectively imaging

the GCaMP6f-expressing GoC somata distributed throughout

the imaging volume (�3003 3003 150 mm) using small imaging

patches (e.g., �403 20 mm; Figure 1C; Video S1). This random-

access approach, which avoided imaging the dead space be-

tween sparsely distributed cell bodies, enabled us to record

simultaneously from tens of GoCs (mean ± SD = 27 ± 10 cells,

range = 10–72 cells, N = 9 animals) at video rates (43 ± 20 Hz,

range = 18–97 Hz). This dense sampling of the local inhibitory cir-

cuit (Video S2) revealed activity that was widespread across the

GoC population (Figure 1D).

Highly correlated GoC activity
Increases in GoC population activity were associated with pe-

riods of spontaneous whisking and locomotion, and when mild

air puffs were applied to the whiskers (Figures 1D and S2). Pair-

wise correlations in GoC activity were large and positive (0.58 ±

0.10, n = 21 sessions, N = 9 animals; Figures 1E and 1F), and no

differences in average correlations per session were observed

between Crus I/II and Lob IV/V (0.57 ± 0.08, n = 16/N = 5 versus

0.63 ± 0.14, n = 5/N = 4, Mann-WhitneyU test, p = 0.3). Since the
high level of correlation could be distorted by the slow decay ki-

netics of the GCaMP6f indicator (Sabatini, 2019), we performed

a complementary analysis using an established spike estimation

algorithm (Berens et al., 2018; Deneux et al., 2016) to infer the un-

derlying spike-related events (Figures S3A and S3B). GoC event

rates exhibited similar population-level changes associated with

whisking and locomotion, and substantial pairwise correlations

(Figure S3C; 0.42 ± 0.10, n = 21/N = 9; events versus DF/F =

�0.16 ± 0.11, p = 1.43 10�4; Wilcoxon signed rank test). Corre-

lations remained high across the imaging volume, with little

decay with distance for both DF/F (Figure 1G; linear fit: slope =

�0.18/300 mm, R2 = 0.88) and event rates (Figure S3D, linear

fit: slope = �0.02/300 mm, R2 = 0.08). These results show that

local populations of GoCs exhibit spatially uniform, highly corre-

lated activity in awake behaving mice.

Slow network-wide activity modulation across local
networks
The structure and distribution of correlations is generally more

important than their mean strength in determining information

encoded by neural populations (Averbeck et al., 2006; Cohen

and Kohn, 2011). We therefore examined the correlation struc-

ture by decomposing total covariance into contributions from

different population modes (PMs, or degrees of freedom; Fig-

ure 2A) using principal-component analysis (PCA), which

enabled each neuron’s activity to be expressed as a weighted

linear combination of the different PMs, with the weights ex-

pressed as the loadings (Figure 2B). The contribution of each

mode to the total population covariability was calculated using
Neuron 109, 1739–1753, May 19, 2021 1741



Figure 3. Network-wide modulation of GoCs is correlated with behavioral engagement

(A) Example of PM1, binary state and behavioral variables (whisker angle, F). Blue box shows the indicated region on expanded timescale, with active periods

marked in light red.

(B) Cross-validated linear regression of PM1 to all behaviors. Explained variance (mean ± SEM): (state) 0.17 ± 0.03, (WMI) 0.36 ± 0.03, (Loco) 0.17 ± 0.03, (W-Amp)

0.39 ± 0.07, (F) 0.21 ± 0.08, and (WSP) 0.19 ± 0.07. Linear combination (Linear Comb, 0.49 ± 0.15) predicted PM1 significantly better than any of the individual

behavioral variables (Mann-Whitney U test). Number of sessions (n) and animals (N) analyzed. Scatter represents individual sessions (Crus: cyan, Lob IV/V:

magenta), bars and error bars indicate means ± SEMs across sessions.

See also Figure S4.
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a cross-validated variant of PCA (Owen and Perry, 2009; Stringer

et al., 2019). This revealed a dominant first population mode

(PM1), with an amplitude (eigenvalue) almost 6 times larger

than the next mode (Figure 2C; PM2/PM1 = 0.16 ± 0.05,

n = 21/N = 9). PM1 explained a large fraction of single neuron

variability (cross-validated explained variance [CVEV] = 0.70 ±

0.09, n = 21/N = 9 for all recordings), and no difference was

observed between Crus I/II and Lob IV/V (Figure 2D; Mann-Whit-

ney U test, p = 0.48).

To investigate whether PM1 corresponded to a network-wide

modulation of GoCs rather than a subset of highly active neu-

rons, we examined the loading of PM1 for individual neurons.

Most GoCs in each circuit had a large positive weight for PM1,

suggesting that they were all similarly activated in a common

mode (Figure 2E). Comparison of the autocorrelation of the top

modes during the same behavioral sequences revealed that

PM1 had the slowest decay (Figure 2F; PM1 versus non-PM1:

Dcorr at 1-s lag = 0.12 ± 0.02, p = 9 3 10�5; Dcorr at 5-s lag =

0.15 ± 0.06, p = 0.025; Wilcoxon signed rank test, n = 21/N =

9), suggesting that PM1 arises from a slow modulation of the

network activity. To test how the slow time course of GCaMP6f

fluorescence affected the relative amplitudes of the PMs, we

repeated the analysis on extracted event rates. This confirmed

that PM1 was substantially larger than subsequent modes (Fig-

ure S3E; PM2/PM1 = 0.21 ± 0.09), with positive weights of

PM1 for most neurons (Figures S3F and S3G). However, the

amplitude of PM1 was lower for events than for fluorescence

(Figure 2D, unfilled bars; CVEV by PM1: 0.36 ± 0.10, n = 21/

N = 9; events versus DF/F, p = 6 3 10�5, Wilcoxon signed rank

test), and the autocorrelation timescale faster (Figure S3H;

PM1 versus non-PM1: Dcorr at 500-ms lag = 0.20 ± 0.04, p =

1 3 10�4; Dcorr at 5-s lag = 0.06 ± 0.03, p = 0.43; Wilcoxon

signed rank test, n = 21/N = 9). The qualitatively similar results

obtained for events show that the highly correlated GoC activity
1742 Neuron 109, 1739–1753, May 19, 2021
reflects a slow, network-wide modulation of GoCs present in

both the vermis and the cerebellar hemisphere.

Widespread network activity is correlated with the level
of behavioral activity
To investigate the relationship between the common population

mode and behavior, we compared the amplitude of PM1 to mul-

tiple behavioral variables: locomotion speed (Loco), whisker mo-

tion index (WMI), whisker setpoint (WSP), amplitude (WAmp) and

angle (F). We also defined a binary variable indicating whether

the animal was in an active state (periods of locomotion and

whisking) or a quiet wakeful state (Figure 3A). PM1 was corre-

lated with all of the measured behavioral variables (Figures

S4A and S4B), which were themselves partially correlated with

one another due to coordinated body movements (Figure S4C).

The level of correlation of PM1 with behavior was similar for Crus

I/II and Lob IV/V, suggesting that it reflects widespreadGoC acti-

vation during active behavioral states.

To test whether specific behaviors were encoded in the com-

mon mode, we examined only the active state (including 500 ms

before and after each active epoch; see box in Figure 3A) using

linear regression. A modest fraction of the PM1 variance could

be explained by each of the measured behavioral variables (Fig-

ure 3B; �30%–40% for WMI and W-Amp, 17%–20% for the

others), and their contributions were similar across lobules

(Crus I/II versus Lob IV/V: (WMI) p = 0.08, (Loco) p = 0.08,

Mann-Whitney U test). A linear combination of behavioral mea-

sures accounted for a substantially larger fraction of the common

mode variance than the individual behavioral variables (Fig-

ure 3B; �40%–60%, p < 10�4 for WMI, Loco, n = 20 sessions/

N = 9 animals; p < 0.001 for WAmp, angle F, and WSP, n = 10/

N = 7; one-sided Wilcoxon signed rank test), with cross-valida-

tion ensuring a fair comparison of models with differing numbers

of parameters. Moreover, the binary state variable explained less



Figure 4. Spatially mixed heterogeneous dynamics within local GoC networks

(A) Example activity traces from 5 GoCs (DF/F, black traces) during whisking (WMI, red) and locomotion (Loco, blue), with different activity during active states as

residual DF/F (orange) after projecting out PM1. Mean total correlation = 0.72, residual correlation = 0.07.

(B) Comparison of pairwise correlations for total (gray) and residual (orange) DF/F, and for shuffle control (light blue) across sessions (n = 21, N = 9 animals). Black

symbols and horizontal bars show population means. Difference in total and residual correlation for all pairs, p = 6 3 10-5, Wilcoxson signed-rank test.

(C) Distribution of residual correlations (after projecting out PM1) in Crus I/II (cyan, n = 16, N = 5) and Lob IV/V (magenta, n = 5, N = 4).

(D) Dependence of residual correlation on distance between GoCs, for positively (red; Pos) and negatively (blue; Neg) correlated pairs (significant compared to

each pair’s shuffle distribution) and all pairs (black). Dotted lines with circles represent binned averages (20 mmbins), shaded areas indicate SEMs, and solid lines

denote exponential fits to data.

(E) Distribution of distance between GoCs for positively (red) and negatively (blue) correlated pairs and all pairs (black), for 20 bootstrapped samples. Shaded

region shows means ± SEMs.

See also Figures S3 and S5.
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variance than whisking amplitude (WAmp versus state: p =

0.003, n = 10/N = 7, Wilcoxon signed rank test). Thus, the wide-

spread engagement of the GoC network, as reflected in PM1, is

correlated with the overall level of whisking and locomotion,

rather than distinct behavioral variables in different regions of

the cerebellar cortex.

GoCs exhibit heterogeneous response dynamics
We next examined whether the slow common modulation of

the network implied homogeneous activity across individual

neurons or whether they also exhibited distinct dynamics on

subsecond timescales. Visual inspection of DF/F from different

GoCs in the same circuit indicates that they have heteroge-

neous activity profiles during periods of active whisking and

running (Figure 4A). To quantify the variability of individual neu-

rons around the slow common population mode, we projected

out PM1 and examined their residual DF/F (Figure 4A). Without

this procedure, the total correlations were largely positive due

to the large amplitude of PM1, which masked the residual cor-

relations (Figures 4B and S5A–S5C; total versus residual corre-

lations: [mean ± SD] Dcorr = 0.57 ± 0.09, n = 21/N = 9, p = 6 3

10�5, Wilcoxon signed rank test). Residual correlations were

distributed around zero (mean = 0.01 ± 0.03, n = 21/N = 9),

but included strongly positively and negatively correlated

GoC pairs (significant compared to shuffled control for each

pair; Method details) with an absolute magnitude of significant

correlations (0.32 ± 0.16). Residual correlations were similar for

both lobules (Figure 4C; Crus I/II versus Lob IV/V, p = 0.6,
Mann-Whitney U test), and were robust when calculated using

event rates rather than DF/F (Figures S3I and S3J; residual cor-

relation = �0.01 ± 0.01, absolute magnitude = 0.18 ± 0.11, total

versus residual correlation, Dcorr = 0.42 ± 0.10, p = 6 3 10�5,

Wilcoxon signed rank test). Although residual correlations de-

cayed with distance (Figure 4D, exponential fit in 20-mm bins:

all, l = 37 mm, R2 = 0.85, n = 21/N = 9), the separation of

positively and negatively correlated pairs showed that they ex-

hibited much weaker distance dependencies (positively corre-

lated, l = 625 mm, R2 = 0.92; negatively correlated, l =

1,250 mm, R2 = 0.68), with negatively correlated pairs found

at slightly larger distances (Figure 4E; Kolmogorov-Smirnov

test, p < 10�4). We also examined the spatial dependence in re-

sidual correlations when aligned along, or orthogonal to, the

parallel fiber axis, as this should reveal any on-beam versus

off-beam spatial structure. However, comparably weak spatial

dependencies were observed in these two directions (Fig-

ure S3K). These results suggest that despite the slow shared

modulation of the network activity during spontaneous behav-

iors, groups of individual GoCs dispersed throughout the local

circuit also exhibit distinct dynamics on faster timescales.

To investigate the reliability of GoC responses in Crus I/II, we

quantified responses to brief air puff stimuli to the whiskers

(events in 50-ms bins; Figures 5A and S6A), which triggered ste-

reotyped whisker deflection at early times followed by variable

self-generated whisking and locomotion (Figure 5B). To deter-

mine the reliability of population activity, we computed the sim-

ilarity of air puff-triggered GoC population activity vectors across
Neuron 109, 1739–1753, May 19, 2021 1743



Figure 5. Reliable heterogeneous responses of local GoC network to air puff to the whisker

(A) Event rates for 20 GoCs on 4 individual trials, and trial-averaged responses aligned to air puff applied to the ipsilateral whiskers (red bar) for an example

session.

(B) Air puff-triggered Loco, WAmp, and WMI for the same example sessions as in (A). Early (0–300 ms) and late (300–800 ms) epochs, characterized by low and

high behavioral variability, respectively.

(C) Left: schematic showing similarity of GoC response S(t); dot product between population activity vectors r(t) for same time bins t aligned to puff for each pair of

trials, and averaged across all pairs. Right: profile of similarity across trials for GoC population response (black) and WMI (red), as a function of time from puff

onset. CV, coefficient of variation. Shaded region (gray) shows SEM across sessions (n = 12/N = 5 animals). The same sessions were used in (C)–(G).

(D) Inter-trial (filled) and intra-trial (white) variability in response to air puff. Left: SD of latency to first event and peak event rate, for single neurons across trials and

across neurons within the same network. Right: inter-trial and intra-trial SD of event rate for early (0–300 ms; red) and late (300–800 ms; blue) periods. Scatter

denotes individual session; bar and error bar denote means ± SEMs across sessions.

(E) Mean air puff-triggered response (event rate, with PM1, Z scored for each type) for 3 classified types (n = 85,161,15 GoCs in classes I, II, and III, respectively,

N = 5 animals), compared to time-shuffled responses (gray).

(F) Response variability for class I and II GoCs. Left: SD and mean latency to first event across trials for all class I (orange) and class II (blue) GoCs. Right: CV for

event rate during early and late epochs (n = 261 neurons).

(G) Mean distance for GoCs based on puff response (grouped by class in E). No significant difference between within-class and across-class distances. Scatter

represents individual sessions; bars with error bars represent means ± SEMs across sessions.

See also Figure S6.
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trials, at different times from puff onset (Figure 5C). Comparison

of the similarity in GoC population activity with the trial-to-trial

similarity in WMI revealed that GoC network activity and whisker

motion is highly stereotyped right after puff, and that their trial-to-

trial similarity decays back to baseline level on a comparable

time course (weighted decays, 460 and 530 ms, respectively).

Correlations between GoCs within local networks were, howev-

er, broadly distributed (Figure S6B), suggesting heterogeneity of

individual GoC responses. Air puff-triggered responses of indi-

vidual GoCs had a mean first latency of 103 ± 133 ms with sub-

stantial inter-trial variation in onset (SD of latency to first event =

108 ± 99 ms) and event rate (SD in early epoch [0–300 ms],

across-trial = 0.57 ± 0.15Hz; Figures 5A and 5D). However, the

response variability across neighboring GoCs within a single trial

was consistently larger than for a given GoC across trials (SD of

latency to first event = 136 ± 60 ms, p = 0.01 and the SD of early

event rate = 0.72 ± 0.19 Hz, p = 0.02; Wilcoxon signed rank test

for inter-trial versus intra-trial SD; n = 12/N = 5; Figure 5D). After

the first 300 ms, the trial-to-trial variability was comparable to
1744 Neuron 109, 1739–1753, May 19, 2021
that across the local population (SD of response in late epoch,

across-trial = 0.46 ± 0.31Hz, across-neurons = 0.36 ± 0.15 Hz,

p = 0.08), consistent with behavioral variability across trials in

the late epoch (Figures 5B and 5C). We further classified GoCs

into 3 broad categories: fast onset and transient response (class

I, 85/261 cells; 34% ± 8% per session), late onset and/or sus-

tained activity (class II, 161/261 cells, 61% ± 8% per session),

and depression or no response (class III, 15/261 cells; Figures

5E and S6). Class I responses were highly reliable, with �90%

response probability and low trial-to-trial variability in first la-

tency (Figures S6E and S6F). By contrast, class II had higher

intertrial variability, consistent with the larger variability of self-

generated behavioral responses at later times (Figures 5F and

S6F). There was no difference in pairwise distance between

GoCs within or across these classes, indicating that they were

spatially mixed within the local circuit (Figure 5G; Wilcoxon

signed rank test, p = 0.64). The larger within-network variability

than inter-trial variability reveals that GoC circuits respond reli-

ably to mild air puffs to the whiskers and that individual GoCs



Figure 6. Multidimensional population activity
(A) Relationship between cross-validated explained variance (CVEV) and

number of population modes (PMs). Gray curves show individual sessions and

filled circles show peak CVEV, corresponding to shared dimensionality for

populations in Crus I/II (cyan, n = 16/N = 5) and Lob IV/V (magenta, n = 5/N = 4).

Same sessions and color scheme were used in (B)–(F).

(B) Dimensionality of GoC responses quantified either as shared or effective

dimensionality.

(C) Estimated shared dimensionality from recordings with different numbers of

GoCs for DF/F (left) and event rates (right). Red lines denote linear fits.

(D) Variability (SD) of loadings along top PMs (PM 1–5) within each session.

(E) Similarity between GoCs as measured by overlap (dot product) of their

loadings as a function of their pairwise distance. Red symbols indicate binned

averages and line denotes linear fit. Color bar indicates probability density.

For all of the panels, scatter denotes individual sessions; bars and error bars

indicate means ± SEMs across sessions.

See also Figure S7.
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within local populations exhibit heterogeneous dynamics on the

timescale of hundreds of milliseconds.

Differential modes in population activity
To investigate how population activity is structured across

GoCs, we quantified the shared activity subspace, using the
peak of the relationship between CVEV and the number of

modes (Owen and Perry, 2009; Stringer et al., 2019) (Figure 6A).

This provided a lower bound on the dimensionality of the shared

subspace (shared dimensionality) that can be inferred from the

population activity, given the noise level within each experiment

and the size of the imaged population. Similar estimates of

shared dimensionality were obtained for GoC circuits in Crus

I/II and Lob IV/V (p = 0.18, Mann-WhitneyU test), and were com-

parable when calculated from DF/F (7.0 ± 2.4) or event rates

(5.9 ± 2.2, n = 21/N = 9; Figure 6B). However, these are likely

to be underestimates for the entire local network, as higher

values were associated with experiments with larger numbers

of recorded cells (Figure 6C; linear fit for shared dimensionality

versus population size [DF/F] R2 = 0.78, [events] R2 = 0.13).

An alternative approach that characterizes the dimensionality

of total variability (including independent GoC activity and noise)

after adjusting for the relative amplitudes along the different

modes to give an effective dimensionality (Abbott et al., 2011)

gave a lower estimate due to the large, possibly overestimated,

contribution of PM1 (Method details; Figure 6B; effective dimen-

sionality: DF/F = 2.5 ± 0.5, events = 4.5 ± 1.2; shared versus

effective: DF/F p = 4 3 10�5, events p = 0.01, Wilcoxon signed

rank test). Despite the differences in these approaches, these re-

sults revealed that local GoC circuits exhibit multidimensional

population activity, with some response dynamics shared across

the entire population and others restricted to subsets of GoCs.

To examine the properties of population modes beyond PM1,

we compared their loadings to the common mode within each

population. Their substantially higher variance indicates that

they are differentially distributed across the GoC population (Fig-

ure 6D; PM1 versus PM2–PM5, p < 10�5, Wilcoxon signed rank

test). Since these modes contribute to the heterogeneous (Fig-

ures 4 and S5) and faster-varying (Figure 2F) residual activity,

we refer to them as differential modes. To investigate the organi-

zation of the activity space, without the constraint of orthogo-

nality imposed by PCA, we applied independent-component

analysis (ICA). ICA gave qualitatively similar results for the

dimensionality and the variance of the loading as cross-validated

PCA (Figure S7). The angle between PM1 and the differential

population modes was close to orthogonal (84� ± 6�, n = 21/

N = 9). This suggests that the common and differential popula-

tionmodes are likely to operate independently without interfering

with each other.

To explore the spatial structure of GoC responses along differ-

ential population modes and to test whether nearby neurons had

similar residual modulation, we calculated the dot product of the

loading vectors for each pair of neurons (excluding loading of

PM1 and noise modes; see Method details) and plotted this as

a function of their pairwise distance. The lack of spatial depen-

dence in the overlap of differential modes (Figure 6E; linear fit,

slope = �0.05/300 mm, R2 = 0.82; Figure S7E for ICA) suggests

that differential population modes were neither global nor clus-

tered, which is consistent with the weak distance dependence

of residual correlations (Figure 4D).

To investigate whether the differential population modes

contain sensorimotor information, we used linear regression to

decode behavioral variables from one ormore populationmodes

(Figures 7A and 7B). An optimal number of population modes
Neuron 109, 1739–1753, May 19, 2021 1745



Figure 7. Decoding behavioral variables from GoC population modes

(A) Example decoding of 4 behavioral variables (on the same held out time period), using only PM1 (blue) or an optimal number of modes (orange), and for within-

period shuffle control (black), with the corresponding CVEV for each case. The behavioral trace is displayed in gray.

(B) CVEV for increasing number of modes for 4 behavioral variables for all sessions (n = 20 for WMI, Loco; n = 10 for WAmp, WSP; cyan for Crus I/II, magenta for

Lob IV/V). Same sessions are shown in (C) and (D).

(C) CVEV by decoding individual behavioral variables from PM1 (blue, unfilled) or an optimal combination of modes including PM1 (orange, filled). Shuffle controls

(black): within-period shuffle (unfilled) in which the 500-ms blocks from the same active periodwere rearranged, and across different active periods (filled) in which

500-ms blocks were randomly reordered across all active periods.

(D) Number of modes for optimal decoding performance (90% of the total improvement over PM1) for each of the 4 behavioral variables.

See also Figure S8.
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(including PM1) explained a larger fraction of the CVEV for each

of the behavioral parameters than the commonmode alone (Fig-

ure 7C, PM1 versus optimal modes: Loco, DfEV = 0.16 ± 0.11,

p = 10�4; WMI, DfEV = 0.17 ± 0.06, p = 10�4 (n = 20/N = 9) W-

Amp, DfEV = 0.19 ± 0.13, p = 0.002; WSP, DfEV = 0.25 ±

0.12 p = 0.002 (n = 10/N = 7); Wilcoxon signed rank test). The

number of optimal modes varied considerably across animals

(Figures 7B and 7D; WMI, mean = 5.6 ± 3.2; Loco, 8.7 ± 3.3,

n = 20/N = 9;WAmp, 6.0 ± 2.2;WSP, 10.3 ± 4, n = 10/N = 7), likely

due to inter-animal differences in behavioral sequences (behav-

ioral information was not directly used for decomposing popula-

tion activity into modes). However, the consistent increase in ex-

plained variance over the common mode indicates that

successive differential modes carry additional behavioral infor-

mation. To confirm this, we performed a control by testing the

decodability of 2 shuffled surrogate variables with an optimal

number of modes. First, we shuffled traces (as 500 ms blocks)

within the same behavioral epoch, thereby maintaining the

average level of behavioral activity but removing within-epoch

signal structure. As expected, the optimal within-period shuffling

performance was similar to the decoding of behavior from PM1

alone (Figure 7C; PM1 versus within-period shuffling: Loco, p =

0.10; WMI, p = 10�4; W-Amp, p = 0.04; WSP, p = 0.70; Wilcoxon
1746 Neuron 109, 1739–1753, May 19, 2021
signed rank test), but was significantly worse than the optimal

decoding of true behavioral traces (Figure 7C; optimal mode

versus within-period shuffling: Loco, p = 0.001; WMI, p = 10�4;

W-Amp, p = 0.002; WSP, p = 0.002; Wilcoxon signed rank

test). Second, shuffling behaviors across different active periods

disrupted the slow dynamics and destroyed all explanatory

power (Figure 7C; PM1 versus across-period shuffle: Loco, p =

2 3 10�4; WMI, p = 10�4; W-Amp, p = 0.002; WSP, p = 0.10;

Wilcoxon signed rank test). In a separate set of experiments

with high-speed tracking of the ipsilateral forelimb, we observed

that some GoCs (24%) were more active during certain phases

within each step cycle (Figure S8). This suggests that the rapidly

modulated activity of subsets of GoCs encode features such as

paw lift during the step cycle. These results show that differential

GoC activity contains specific information on whisking and

locomotion.

An electrically coupled GoC circuit model reproduces
observed population-level properties
To investigate how population modes may arise, we built a

biologically detailed model of the GoC circuit that was con-

strained by experimental measurements (Figure 8A; Method de-

tails). Model GoCs reproduced the narrow spike and slow



Figure 8. Biologically detailed GoC circuit model requires electrical coupling to reproduce multidimensional network activity with a com-

mon mode

(A) Schematic of GoC circuit model, with gap junctions (GJs, resistor symbols) between cells and positively (Pos, red) and negatively (Neg, blue) modulated input

spike trains targeted to excitatory synapses on apical dendrites (PF, parallel fiber inputs) and soma (MF, mossy fiber inputs) of model GoCs.

(B) Example of somatic membrane potentials from model GoCs and net input rate.

(C) Raster plots of spiking activity from 40 GoCs with GJs (top, black) and without GJs (orange, bottom).

(D) Distribution of pairwise correlations between GoCs within local circuits with electrical coupling (black) and without electrical coupling (orange) together with

correlations between inputs (blue) across varying input levels. The distribution of correlations observed experimentally with in vivo calcium imaging is shown

in green.

(E) Dependence of total pairwise correlation on distance between model GoC somata and in experimental data.

(F) CVEV by PM1 (left) and (right) distribution of loadings for PM1, asmeasured experimentally (data), and for model circuits with (GJ) andwithout (noGJ) electrical

coupling, together with PM1 of the simulated inputs (Inp).

(G) Autocorrelation of PM1–5 for modeled GoCs with (left) and without (right) GJs, as average profile across simulations with different input levels. The gray

shaded area indicates autocorrelation of shuffled activity.

(H) Distribution of residual correlations (after projecting out PM1) across all input levels.

(I) Relationship between total explained variance (EV) and number of modes.

(J) Effective dimensionality (based on I) of population activity of GoCs and inputs.

(K) Relationship between CVEV and number of modes, for experimental data (green) and modeled GoCs with GJs (black). Bold lines are means across sessions

and shaded regions SDs.

(L) Maximal CVEV (shared variance) versus number of modes at peak CVEV (shared dimensionality).

(M) Dimensionality of shared subspace: number of modes corresponding to maximal CVEV for each simulation or experimental session.

(D–M) Key for color labels. For all relevant panels, scatter denotes different network simulations (with a given input level) or experimental sessions.

See also Figures S9 and S10.
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afterhyperpolarization (AHP) profiles (Figure 8B), spontaneous

firing rate and firing rate-current relationships recorded from

GoCs (Lanore et al., 2019). A total of 115 model GoCs were

randomly placed within a 5003 5003 100 mm volume and con-

nected via multiple linear GJ conductances, such that the

coupling coefficient and connection probability between pairs

of GoCs decayed with space constants of 70 and 40 mm, respec-

tively, as measured in paired whole-cell recordings (Vervaeke

et al., 2010). Excitatory mossy fiber and GrC synapses were
randomly connected to somata and dendrites, respectively,

and input trains mimicked positively and negatively modulated

mossy fibers (Ro�s et al., Cosyne abstract 2018) and parallel fibers

(Lanore et al., 2021) observed during spontaneous behaviors.

Groups of model GoCs (35–45) located within subregions equal

in size to our imaging volumes (300 3 300 3 100 mm) were

analyzed to facilitate comparison with our experimental results.

Spike trains from model GoCs were loosely synchronized

across the local population (Figure 8C). GoCs exhibited strong
Neuron 109, 1739–1753, May 19, 2021 1747
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positive pairwise correlations (Figure 8D, mean correlation =

0.64 ± 0.27) that were robust across a wide range of excitatory

drive (Figure S9). Moreover, there was little decay in the correla-

tion magnitude across the imaging volume, as observed exper-

imentally (Figure 8E), but this became more pronounced on

larger spatial scales and when coupling strength or input corre-

lations were reduced (Figures S9 and S10A). Removal of electri-

cal coupling desynchronized GoC spiking and reduced themean

pairwise correlation to zero, close to that of the synaptic inputs

(Figures 8C–8E). These results show that electrical coupling

could underlie the high pairwise correlations observed across

local populations of GoCs during spontaneous behaviors.

To investigate the relationship between electrical coupling and

the structure of population activity in the GoC circuit model, we

applied PCA. This revealed a slow, widespread, and dominant

common population mode (PM1, CVEV = 0.67 ± 0.12), as found

experimentally (Figures 8F and 8G), despite a weak PM1 in input

population (CVEV = 0.11 ± 0.01). Moreover, projecting out PM1

from the GoC population activity revealed residual correlations

in activity with a wide distribution (Figure 8H), indicating the pres-

ence of differential modes. This partitioning of total variability be-

tween a dominant common mode and few differential modes

was similar for both model and experiment (Figure 8I) and was

captured by their low effective dimensionality (Figure 8J; model

mean = 1.9 ± 0.4, DF/F data = 2.5). Remarkably, the elimination

of GJs from the model reduced the CVEV of PM1 (Figure 8F) and

increased the effective dimensionality to a level that is compara-

ble to the input trains (28 ± 3 and 35 ± 8, respectively), consistent

with a role of electrical coupling in quenching independent vari-

ability. The effective dimensionality of GoC population variability

depended on coupling strength (Figure S10D). To quantify the

number of reliable population modes in the model, we examined

the relationship between the CVEV and the number of modes

(Figure 8K). This revealed a shared dimensionality comparable

to that found experimentally (5–6), but the explained variance

was larger, which could be due to the lack of noise in the model

(Figures 8L and 8M). By contrast, both the synaptic inputs and

GoC circuit models lacking electrical coupling exhibited negli-

gible shared variance and low shared dimensionality, due to their

activity being largely independent. These results show that the

physiological level of electrical coupling between GoCs could

quench independent input variability and amplify shared vari-

ability of GoCs, generating a dominant common population

mode across the entire local GoC population, while also support-

ing several differential population modes that are restricted to

subsets of GoCs.

DISCUSSION

To investigate population dynamics in an inhibitory circuit, we

have imagedGoCswithin the cerebellar input layer duringwhisk-

ing and locomotion. On slow timescales (>1 s), population activ-

ity was dominated by a network-wide modulation, which corre-

lated with the overall level of locomotion and whisking in both

vermal and hemispheric regions of the cerebellar cortex. On

faster timescales (<1 s), more specific information on whisking

and locomotion was encoded at the population level, across

GoCs with heterogeneous response properties. Many of the
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properties of GoC population dynamics were reproduced in a

biologically detailed circuit model when GoCs were electrically

coupled via GJs, indicating that they could play a major role in

generating multidimensional population dynamics with both

widespread and distributed components. These properties of

the GoC population activity are well suited to delivering the inhi-

bition required for modulating the threshold and gain of down-

stream cerebellar GrCs (Billings et al., 2014; Hamann et al.,

2002; Mitchell and Silver, 2003; Rothman et al., 2009) and for

introducing spatiotemporal patterning (D’Angelo and De Zeeuw,

2009; Duguid et al., 2015; Kanichay and Silver, 2008; Mapelli

et al., 2010).

Experimental approach and analysis
We combined random-access AOL 3D 2-photon microscopy

(Nadella et al., 2016) with dimensionality reduction and decoding

approaches (Cunningham and Yu, 2014) to examine the proper-

ties of GoC population dynamics, which are inaccessible with

single-neuron or trial-averaged responses (Arandia-Romero

et al., 2017; Averbeck et al., 2006). Sincemeasures of the dimen-

sionality of population activity can be distorted by noise (Stringer

et al., 2019) and the slow kinetics of calcium indicators (Sabatini,

2019), we separately examined the shared subspace using a

cross-validated variant of PCA and the total variability (using

effective dimensionality), and we used inferred spike-related

events to partially compensate for the effects of GCaMP6f ki-

netics. We also confirmed the existence of common and differ-

ential population modes using ICA and observed that these

modes were orthogonal despite not imposing such a constraint.

Although it is likely that we have not captured the full complexity

of population activity on timescales <100ms, due to limitations in

the number of cells and the temporal resolution of GCaMP6f, our

approach establishes that a local GoC circuit can support multi-

dimensional activity that conveys distinct sensorimotor informa-

tion, which is orthogonal to a slow network-wide modulation.

Properties and potential origins of the common
population mode
The most striking feature of GoC population activity is the slow,

circuit-wide upmodulation when the animal is behaviorally

active. This common mode conveys nonspecific information

on the intensity of whisking and locomotion, and is present in

both Crus I/II and Lob IV/V, which have distinct synaptic inputs

and functional specializations (Apps et al., 2018). This observa-

tion raises the possibility that the common mode could extend

across much of the cerebellar cortex. The presence of a domi-

nant common population mode in our GoC circuit model when

it was driven with inputs that were only weakly correlated sug-

gests that it is an emergent property of this inhibitory interneuron

circuit. Moreover, the dependence of the common mode on GJs

between GoC indicates that electrical coupling is critical for its

generation. However, the relative contributions of electrical

coupling and input correlations to PM1 remain to be determined.

By linking electrical coupling to population modes, our results

extend previous in vitro studies that suggested excitatory drive

via feedforward mossy fiber inputs and feedback excitation

from GrCs (Cesana et al., 2013; Huang et al., 2013; Kanichay

and Silver, 2008) is shared locally through the dendritic GJs
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present between GoCs (Vervaeke et al., 2012). While our results

provide evidence that electrical coupling between GoCs could

quench independent input variability and generate the common

population mode, other mechanisms could also contribute.

These mechanisms include the slow neuromodulatory mecha-

nisms that encode arousal (Reimer et al., 2016), such as seroto-

nin and norepinephrine, which depolarize and hyperpolarize

GoCs, respectively (Fleming and Hull, 2019; Lanore et al.,

2019). The development of better tools for acute silencing of

GJs beyond pharmacological approaches (which have non-spe-

cific effects) and improved fluorescent sensors for neuromodula-

tors (Sabatini and Tian, 2020) would enable experimental testing

of these hypotheses. Nevertheless, our current results establish

that information on the level of locomotion and whisking, which

could serve as a shared contextual signal for coordinating

different behaviors, is available to local GoC circuits and predict

that electrical coupling plays a key role in its emergence.

Properties and potential origins of differential
population modes
Despite substantial shared modulation within a local circuit, indi-

vidual GoCs exhibited heterogeneous activity during sustained

whisking or locomotion. These heterogeneous GoC responses

were spatially mixed and tended to be faster than the popula-

tion-wide increases, resulting in positive and negative modula-

tions in activity about the common mode, and reflected reliable,

distributed sensorimotor information present in local GoC net-

works. This finding is consistent with LFP recordings from the

GrC layer that show that theta oscillations present during quiet

wakefulness (Dugué et al., 2009; Hartmann and Bower, 1998)

disappear during motor activity, since this suggests the network

becomes desynchronized. However, the mechanisms that un-

derlie response heterogeneity and differential population modes

are less clear. Temporally dispersed excitatory inputs could pro-

vide differential synaptic drive to neighboring GoCs, while the

presence of common synaptic input and shared synaptic charge

through GJs (Vervaeke et al., 2012) could make their activity

more similar. Thus, the strength of electrical coupling appears

to be a key factor in determining the freedom that individual

GoCs have to respond to distinct synaptic inputs. Our GoC cir-

cuit modeling suggests that although electrical coupling at phys-

iologically measured levels generates a common mode, it can

also support GoC response heterogeneity with multidimensional

population activity. Several factors could contribute to GoC

response heterogeneity, including differences in synaptic input

strength and membrane excitability, mGluR2 signaling (Wata-

nabe and Nakanishi, 2003), sparse inhibitory synapses formed

between GoCs (Hull and Regehr, 2012), and spike phase delays

generated by the propagation of inhibitory AHPs through hetero-

geneous electrical coupling (Vervaeke et al., 2010). We observed

a diversity in local GoC response dynamics to mild air puffs, but

we did not detect global pauses in inhibitory population activity

as reported in anesthetized animals (Duguid et al., 2015; Holtz-

man et al., 2006; Vos et al., 2000). The absence of long-lasting

unresponsiveness in our recordings could be due to additional

excitatory inputs from both arousal and air puff-triggered startle

responses in the awake state. While the underlying mechanisms

of differential modes remain somewhat speculative, our results
establish that specific behavioral information is represented by

differential GoC activity on subsecond timescales and that this

is spatially mixed within each local inhibitory circuit.

Implications for granule cell inhibition and cerebellar
function
Our modeling suggests that GJs between GoCs quench input

variability, restructuring higher-dimensional excitatory input

(such as that from granule cells; (Lanore et al., 2021)) into lower-

dimensional activity that shapes inhibition in theGrC layer. GrC in-

hibition is mediated by multiple mechanisms that operate on

distinct timescales—fast quantal release of GABA onto synaptic

GABAA receptors, slower spillover of GABA onto high-affinity ex-

trasynaptic receptors, and tonic activation of extrasynaptic re-

ceptors by ambient GABA (Brickley et al., 1996; Crowley et al.,

2009; Rossi et al., 2003). The widespread nature of the common

GoC population mode, further augmented by GABA spillover

and tonic inhibition on slow timescales, is likely to provide behav-

ioral activity-dependent inhibition across local populations of

GrCs. Such homogeneous inhibition is a common feature of cere-

bellar circuit models (Billings et al., 2014; Cayco-Gajic et al.,

2017), since it is an effective mechanism for network activity-

dependent scaling of both firing thresholds and gain of the down-

stream GrC population (Mitchell and Silver, 2003; Rothman et al.,

2009). At the population level, the role of widespread inhibitory

modulation may be to dynamically adjust GrC excitability to a

level that ensures nonlinear thresholding for effective decorrela-

tion (de la Rocha et al., 2007), while conserving information trans-

mission through the circuit, under widely different levels of excit-

atory input (Billings et al., 2014). Optimizing these functions when

a substantial fraction of GrCs are active, as found experimentally

(Giovannucci et al., 2017), is important for supporting high-dimen-

sional representations in the GrC layer (Cayco-Gajic et al., 2017;

Litwin-Kumar et al., 2017), which facilitate pattern separation, a

major proposed function of the GrC layer (Albus, 1971; Cayco-

Gajic and Silver, 2019; Marr, 1969).

In contrast to the slow common mode, differential population

modes are likely to generate distinct spatiotemporal patterns of

inhibition onto GrCs on intermediate timescales. Such patterned

GoC activity is expected to deliver precisely timed inhibition onto

individual GrCs (Duguid et al., 2015; Kanichay and Silver, 2008)

and modulate spatial patterns of activity onto the postsynaptic

targets of GrCs (Valera et al., 2016). Across the GrC population,

asynchronous inhibition generated by heterogeneous GoC re-

sponses could enhance temporal diversity in GrCs (Medina

and Mauk, 2000), providing the basis for liquid state computa-

tions and adaptive filters (Fujita, 1982; Rössert et al., 2015; To-

kuda et al., 2021) and sensory prediction (Kennedy et al., 2014;

Medina et al., 2000). Lastly, computational modeling of circuits

with large feedforward expansion has highlighted the impor-

tance of having heterogeneous inhibition for decorrelation (Lit-

win-Kumar et al., 2017; Zavitz et al., 2020). By establishing the

presence of common and differential population modes, our re-

sults show that a local Golgi cell circuit exhibits multidimensional

population activity with the spatiotemporal properties required

for both the temporal processing and pattern separation roles

proposed for GrC layer, bridging the gap between these 2

distinct conceptual frameworks.
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Implications for other inhibitory circuits
Here, we leveraged 3D random-access AOL microscopy to

densely sample sparsely distributed GoCs and the framework

of dimensionality to show that a single cerebellar inhibitory circuit

can generate coordinated multimodal activity across multiple

spatiotemporal scales. The highly correlated pairwise activity,

heterogeneity in response properties, and electrical coupling

found in GoCs have also been reported in other inhibitory inter-

neurons (Gaffield and Christie, 2017; Khan et al., 2018; Pinto

and Dan, 2015), raising the possibility that they could have simi-

larly organized population dynamics. Recent recordings from

other circuits show that task-relevant information is also avail-

able in local inhibitory networks (Ma et al., 2020; Najafi et al.,

2020). Moreover, our biologically detailed model of the GoC cir-

cuit predicts that electrical coupling plays a key role in support-

ing both common and differential modes. By setting the degrees

of freedom of each interneuron, the strength of electrical

coupling could provide a powerful mechanism by which to

tune interneuron population dynamics and thus the spatiotem-

poral properties of downstream inhibition. Where interneurons

form distinct classes, different modes of inhibitory control could

be segregated across interneuron populations with specialized

connectivity (Bos et al., 2020; Kepecs and Fishell, 2014) and pro-

vide greater control of the neuronal input-output functions via

dendritic inhibition (Gidon and Segev, 2012; Lovett-Barron

et al., 2012). Population-level recordings will be critical for

understanding how different inhibitory interneurons orchestrate

the activity of the circuits in which they are reciprocally

interconnected.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and viral constructs
All animal procedures were carried out in accordance with institutional animal welfare guidelines and the United Kingdom Home

Office Animals (Scientific Procedures) Act of 1986. The genetically-encoded calcium indicator GCaMP6f (Chen et al., 2013) was

expressed in glycinergic inhibitory interneurons in the granule cell layer. A floxed construct (AAV9.CAG.flex.GCaMP6f.WPRE.SV40;

Addgene Cat#100835-AAV9) was delivered via microinjection in either lobule IV/V (vermis) or Crus I/II (right hemisphere) inGlyT2-Cre

adult transgenicmice. This tranduction strategy labeled 65%–85%of all Golgi cells (GoCs; Figure S1), which are themain interneuron

type in the granule cell layer (Simat et al., 2007), along with Lugaro cells and globular cells, which were largely excluded from imaging

based on morphological (highly elongated soma or axons extending into the molecular layer) and anatomical (cells close to the Pur-

kinje cell layer) features. All experiments, including surgical procedures and imaging, were performed in adult mice of either sex (6-

24 weeks; N = 6 males, 6 females). For immunolabeling experiments, three adult male GlyT2-GFP mice were additionally used.

METHOD DETAILS

Surgical procedures
All surgical procedures were carried out under sterile conditions, with separate procedures for viral delivery and cranial window

preparation. Prior to surgery, mice received subcutaneous injections of dexamethasone (1 mg/kg), atropine (0.04 mg/kg) and carpo-

fen (5mg/kg). Anaesthesia was induced by intraperitoneal injection of amixture of fentanyl (0.075mg/kg), medetomidine (0.75mg/kg)

and midazolam (7.5 mg/kg). Reflexes were monitored throughout the surgery, body temperature maintained at 37�C using a regu-

lated heating pad (FHC Inc.), and eyes covered by Viscotears eye gel to prevent dehydration. Post-surgery analgesia (buprenorphine

0.1 mg/kg) was subcutaneously administered prior to anesthesia reversal via atipamezole (3.75 mg/kg), flumazenil (0.75 mg/kg) and

naloxone (1.8 40 mg/kg). Animals were kept in a heated chamber until full recovery of reflexes and locomotion, and provided post-

operative care and analgesia (buprenorphine 0.1 mg/kg) for 48 hours.

For viral delivery, stereotaxic coordinates were identified based on AllenMouse Brain Atlas (Crus I/II: (AP) 6.3-6.7mm frombregma,

(ML) 2.4-2.7 mm from midline; (Lob IV/V): (AP) 6.1-6.3 mm from bregma, (ML) ± 0.2 mm from midline) along with visual adjustment

based on vasculature and cranial sutures. A small craniotomy was performed at 1-3 sites per animal (to maximize targeting effi-

ciency), and a glass pipette (40-60 mm diameter) preloaded with the viral vector was slowly lowered into the identified coordinates.

A pressure-based delivery system (Toohey Spritzer) was used to slowly inject 150-250 nL over 10-15 min, at a depth of 200-400 mm

below the pial surface. In five animals this was accompanied by red fluorescentmicrobeads (4 mmfluospheres, ThermoFisher, 1:2000

dilution) for real time 3D movement correction (Griffiths et al., 2020). 3-6 weeks post AAV expression, a separate surgery was per-

formed to prepare a cranial window for imaging. Part of the neck muscles were dissected, cranial surface was cleared of connective

tissue, and a custom-made head plate affixed using cyanoacrylate glue and dental acrylic cement (Paladur, Kulzer), centered over

injection coordinates. A 4 mm craniotomy was performed (with occasional �1 mm durotomy) and the exposed surface cleared of

blood and debris using sterile cortex buffer (125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM

CaCl2 [pH 7.4]). The craniotomy was then sealed with a 4 mm diameter glass coverslip (630-2112 VWR) and fixed with cyanoacrylate

glue to allow chronic imaging.

In vivo 3D imaging
Mice were accustomed to head-fixation and the imaging setup (at least 3 sessions, 1 week) before data acquisition. Calcium imaging

was performed using a in-house custom acousto-optic lens (AOL) 3D random-access two-photon microscope (Fernández-Alfonso

et al., 2014; Kirkby et al., 2010; Nadella et al., 2016) that utilized some components from a Slicescope (Scientifica), a water objective

(20 X, 1.0 NA, Olympus) and a 920 nm excitation source (Chameleon Vision, Coherent). The illumination power was typically 10-20

mW, and emitted fluorescence was collected using GaAsP photomultiplier tubes (PMTs, Hamamatsu), in red and green channels

(Dichroic: 575dcxr, filters: HQ 525/70 m-2P, HQ 630/100 m-2P). The microscope was controlled with custom SilverLab imaging soft-

ware (LabView, National Instruments).

A high resolution AOL-based Zstack was first acquired to locate GCaMP6f-expressing neurons within the imaging volume (typi-

cally 250 mm x 250 mm x 200 mm, but up to 400 mm x 400 mm x 400 mm). Small imaging ‘patches’ (�40 mm x 20 mm, pixel size

�0.5 mm) were manually placed around GoC soma distributed throughout the imaging volume; Video S1). Patches were then selec-

tively imaged with AOL-based random access line scanning. In a subset of experiments (n = 2, N = 2 mice), real time 3D movement

correction was performed by tracking a red fluorescent bead (Figure S11; Video S3; Griffiths et al., 2020). Imaging of somatic patches

was performed at 100-200 ns voxel dwell times, for a total of 5-25min overmultiple sets of ‘trials’ (10-20 s per trial, 10-30 trials per set)

that were subsequently pooled (trials were continuous and only used for optimal memory usage and file storage). Acquisition rate for

imaging selected patches varied between 18-97 Hz, depending on the total number. Mice were free to run on a cylindrical treadmill

and to whisk. Locomotion was measured using a rotary encoder attached to the wheel (RI58, Hengstler, Germany), and video cam-

eras monitored orofacial movements (300 Hz, Mako) and forelimb/facial areas (30 Hz, The Imaging Source), using a far IR LED for
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illumination. In n = 3 additional mice, forelimbs were monitored with two faster cameras (300Hz, Mako and 110 Hz, The Imaging

Source). A picospritzer was used to deliver brief (100ms), minimally-aversive airpuff to the distal end of the (ipsilateral) whiskers

on 1-2 blocks of trials (20 trials/set).

Immunohistochemistry
GlyT2-GFP (N = 3) and GlyT2-Cre (N = 3, with viral transduction of GCaMP6f) mice were deeply anaesthetised with sodium pento-

barbital and transcardially perfused with 4% paraformaldehyde in phosphate buffered saline (PBS). Brains were extracted and post-

fixed for 24 h. 70 mmhorizontal sections (or as parallel to imaging plane as could be estimated) were prepared using a vibratingmicro-

tome (VT1000S, Leica Microsystems) and transferred to multiwell plates for free float immunolabeling. Nonspecific binding was

blocked with 5% normal goat serum. Sections were incubated overnight with antibodies for neurogranin (1:500 dilution, AB5620,

Millipore), then incubated with a secondary antibody conjugated with Alexa 568 (AB175471, Abcam). Sections were slide mounted

with antifade mounting medium and imaged with a Leica TCS SPE8 confocal microscope. Identification of single and double labeled

cells was done manually using ImageJ.

Extracting somatic fluorescence traces
All analyses were performed using custom scripts in MATLAB or publicly available toolboxes. Before extracting fluorescent traces,

post hoc movement correction was performed by maximizing cross correlation with a reference image. Segmentation to obtain

spatial footprint of each soma was then performed by a custom procedure, with edge detection on the mean image, followed by

detecting maximal closed, connected components. All pixels within the mask were averaged to give raw somatic fluorescence.

Normalization was performed per soma using the 10th percentile of raw fluorescence as baseline fluorescence (F0) to compute

DF/F as (F-F0)/F0. These traces were temporally smoothed using a 100 ms square filter. Further analyses were carried out using

this smoothed DF/F as GoC somatic activity.

Event extraction
Inferred spike ‘events’ were detected from raw fluorescence using a previously published and benchmarked spike estimation algo-

rithm (Berens et al., 2018; Deneux et al., 2016). The algorithm fits a probabilistic model that incorporates slow drift, GCaMP6f kinetics

andmeasurement noise, and returns themost likely spiketrain undermodel parameters. First, we subselected the cells with high SNR

(> 1.8, approximately 85%of recorded cells), followed by visual inspection to remove cells with no isolated transients. SNR for a given

cell was defined as the 90th percentile of z-scored responses. Rather than applying fixed model parameters across experiments, we

adapted them to each somatic region of interest (ROI). The raw fluorescence was first scaled between 0 and 1, and the slow baseline

drift estimate permitted to vary maximally between [0,1]. We used the auto-calibration procedure provided with the toolbox to get a

first estimate for themain parameters (decay tau, single spike transient amplitude (a), and noisemagnitude (sigma)). To reduce detec-

tion of spurious single spikes, the transient amplitude was increased by a factor of 1.1, and noise magnitude increased by a factor of

1.2. We verified the stability of the output by measuring spike count correlation for small deviations of sigma and visual inspection of

all outputs. For noisier sessions, the auto-calibration gave significant underestimates, and we used a more conservative estimate of

sigma based on the standard deviation of fluorescence during quiet, resting state of the animal. As single spikes are difficult to resolve

from noise with GCaMP6f (Chen et al., 2013), we refer to the resulting spike output as events or event rates (after smoothing in 200ms

boxcar).

Behavioral analyses
Running speed was calculated from the angular rotation of the cylindrical wheel, and smoothed with a 100 ms boxcar filter. Motion

energy in the whisker pad region (whisker motion index, WMI) was calculated from 300 Hzmovies, using the squared frame-to-frame

difference in intensity across pixels in regions of interest. For whisking kinematics, we measured the (ipsilateral) whisker angle (F),

whisking amplitude (W-Amp), and whisker set point (WSP; low frequency changes in whisker angle around which the whisker is posi-

tioned or oscillates). DeepLabCut (Mathis et al., 2018; Nath et al., 2019) was used to track 3-4 whiskers (typically row C, 3 points per

whisker). As all points share the same underlying model, tracking multiple whiskers (and including the whisker skeleton) generally

gave better training and tracking. Whisker angle for each whisker was defined as the angle between a line parallel to the whisker

pad, and a linear fit to the 3 points. Angles measured from different whiskers were generally correlated, so we only retained the

whisker that had the best tracking performance (estimate likelihood > 0.95 for most time points). This was denoised using a 30 Hz

4th order forward-backward Butterworth filter, and used as the whisker angle (F). The whisking amplitude (W-Amp) was measured

as the magnitude of Hilbert transform of the filtered angle. TheWSPwas obtained by Gaussian smoothing of the whisker angle using

a 500 ms window. Sessions with poor tracking performance were excluded from the relevant analyses. Ipsilateral paw (wrist and 2

digits) was tracked with front (300Hz) and side (110Hz) view cameras using DeepLabcut, and paw height from the wheel and lateral

velocity extracted (Figure S8). The wrist position was used as the most stable indicator of paw position. Times of maximum lift during

swing were obtained by identifying prominent peaks in paw height during running epochs. Times of push-off during the end of stance

were identified as peaks in lateral velocity during running epochs. Paw lifted toward face or ear regions, or limb movements without

sustained wheel movement were distinguished as grooming/non-running epochs.
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Identification of active periods of behavior and binary state variable
The binary state variable denotedwhether the animal was in a behaviorally active period (1), or in a quiet wakeful state (0) for each time

point. Active periods were detected using local averages (in 100 ms bins) of whisker motion index (WMI) and locomotion (Loco). On-

sets and offsets of individual periods were detected by first upward and downward crossings by either behavioral trace of pre-set

thresholds (Onset: 0.25 for WMI, 0.4 for Loco; Offset: 0.2 for WMI, 0.1 for Loco). Detected active periods separated by less than

1 s were merged, and any active period of duration less than 1 s was discarded. For regression analyses in active periods, we

included 500 ms before and after these identified periods.

Biologically detailed network model
Golgi cell networkmodels were written in NeuroML2 (Cannon et al., 2014; Vella et al., 2014) using Python library pyneuroml and simu-

lated using NEURON extension with Python (Hines et al., 2009). A 500 mm x 500 mm x 100 mm volume of the granule cell layer was

modeled with a network of 115 GoCs based on measured anatomical density in rodents (Vervaeke et al., 2010). GoCs were modeled

as conductance-based multi-compartmental neurons with a reduced morphology, which was previously optimized to have similar

behavior as experimentally measured morphologies (Piasini, 2015). Golgi cell ionic conductances were based on published models

(Solinas et al., 2007; Vervaeke et al., 2010), and active conductances were restricted to the somatic compartment (Vervaeke et al.,

2012). Heterogeneous populations of GoC were created by sampling from 25 sets of channel densities (5 per simulated network),

each of which were optimized to have experimentally matched intrinsic firing frequencies (3-9 Hz) and slopes of firing rate-current

relationships (14-25 Hz/nA) (Lanore et al., 2019). GoCs were electrically coupled (except where specified) with ohmic gap junctional

conductances (0.9 nS for each gap junction; Szoboszlay et al., 2016). These were distributed over the dendritic tree and the prob-

ability of electrical coupling between 2 GoCs with intersomatic distance d was given by (Dugué et al., 2009; Vervaeke et al., 2010):

P dð Þ = H 0:01 �
�
� 1745 + 1836

�
1+ exp

d � 267

39

� �� �� �
whereHðxÞ = fx if 0%x%1; 1 if x > 1; 0 otherwiseg. For generating different networks, a randomnumberX was sampled uniformly

from ½0;1� and the 2 cells were connected if X <PðdÞ.
For each connected pair, the total GJ conductance was also a function of intersomatic distance given by:

gðdÞ = g0 � roundðk � YðdÞ =5Þ;
where,

YðdÞ = � 2:3 + 29:7 � exp
�
� d

70:4

�
;

and g0 = 0:9 nS, the conductance of a single GJ. This gave a mean total GJ conductance per cell of 22 nS. For testing robustness of

population dynamics, the strength of electrical coupling was changed by changing conductance by the scaling factor k ðyg =g0Þ in
the above equations (with k = 1 for physiological levels of coupling).

Mossy fibers and granule cells were modeled as spiking input populations, that made synapses onto somatic and apical dendritic

compartments, respectively. Synaptic conductances were modeled as AMPAR type conductances based on measured EPSC ki-

netics (Cesana et al., 2013; Kanichay and Silver, 2008), with weighted double and single exponential decays, respectively.
Synapse Reversal potential (mV) trise (ms) g1 (nS) td1 (ms) g2 (nS) td2 (ms) Peak conductance (nS)

MF-GoC 0 0.1 0.7 0.7 0.2 3.5 0.89

PF-GoC 0 0.1 0.67 1.06 - - 0.67
Spiking input populations
Input spikes were drawn from an inhomogeneous Poisson process, with time-varying mean firing rates frkðtÞg generated as a

weighted linear combination of simultaneous ‘‘behavioural measures’’ ( �b tð Þ), with additional scaling ðAÞ and offset ðcÞ:
rk tð Þ =A �wk � �b tð Þ + c

where �b tð Þ is 6-dimensional behavioral activity from an experimental session, defined by the following variables (normalized): binary

state, locomotion, WSP, WMI, WAmp, pupil area. A fixed 20 s segment of �b tð Þ was used, except where otherwise specified, with

different randomly-drawn sparse weight vectors �wk to generate a population of input spike arrays. To add inputs uncorrelated to

‘‘ongoing behaviour,’’ a different random 20 s segment of the behavioral recordings was selected for each additional input. In addi-

tion, a low-firing background input population (30 MFs at 5Hz, 60 PFs at 2Hz; spikes generated as a Poisson process) was included

for all simulations.
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Properties of modeled excitatory synaptic inputs
Four different kinds of input connectivity were examined, with 16-27 different input levels for each of the four conditions, and 3

different GoC populations per input level:

(1) Behaviorally-driven inputs with random connectivity (‘‘Input-Beh’’):

For each input k, its firing rate rkðtÞ was determined by �wk = w1k ; :::;w6kð Þ, with each wjk drawn uniformly from [0,1] and set to

0 with probability 0.5 (to make �w sparse). Scaling ðAÞ and offset ðcÞ was set to 50 Hz and 7 Hz respectively, and firing rates

clamped below at 2 Hz. Number of MFs and PFs were independently varied between 0-48 and 0-120 respectively, each of which

were randomly distributed in the volume and could synapse with fixed probability of 0.2 on any GoC within a specified neighbor-

hood (within 300 mm for MFs, upto 100 mm along x axis for PFs).

(2) Two populations of behaviorally-driven inputs with random connectivity (‘‘Bimodal inputs’’):

Two different populations were randomly distributed in the volume, with the first population drawn from the same distribution as

Input-Beh. For the second population, scaling was set to - 25 Hz, and offset set to 30 Hz. This modeled populations of positively

and negatively modulated inputs based on experimental observations (Ro�s et al., Cosyne abstract 2018; Lanore et al., 2021).

Fraction and numbers of these input populations were varied for different simulations. Connectivity was random, as described

for Input-Beh.

(3) Additional uncorrelated inputs, random connectivity (‘‘Uncorrelated inputs’’):

Additional inputs were generated with identical weight distribution as Input-Beh, but using different segments of behavioral ac-

tivity (different for each input, same segment of each behavioral variable for a given input). The number of these additional uncor-

related inputs varied between 20%–200% of the number of correlated inputs (Input-Beh) and changed the eigenspectrum of the

inputs. Connectivity was random, as described for Input-Beh.

(4) Clustered connectivity with pure behavioral inputs (‘‘Tuned inputs’’):

The volume was divided into four sagittal ‘‘modules,’’ of 125 mmwidth each. Each module received inputs with firing rates mainly

determined by a single behavioral variable (Loco, WMI+WAmp, Pupil area, WSP), and connectivity further restricted to within

125 mm for MFs. Input populations were created by choosing weight vectors with one dominant weight sampled uniformly

from [0.5,1] and other weights sampled from [-0.1,0.1], with eachweight then set to 0with probability 0.3. The dominant behavioral

identity was randomly permuted across the 4 modules for different simulations. The inputs showed higher within-module corre-

lations and reduced across-module correlations, and thereby decreased the spatial scale of input correlations between GoCs.

Each input connectivity scheme was tested with experimentally-constrained gap junction coupling between GoCs (‘‘GJs’’) or

without electrical coupling (‘‘no GJs’’).

Measuring somatic activity and analysis of model behavior
All simulations were performed with 0.025 ms numerical integration timestep. To avoid storing voltage traces at such high ‘‘acqui-

sition’’ rates beyond the purposes of model validation, only the spike times of each GoC and input were saved. Spikes were con-

verted to firing rates by binning in 40 ms time bins, which was further used for all subsequent analyses. For comparing measures

of population activity to those of experimental data, GoC sub-populations were subsampled from smaller volumes (300 mm x

300 mm x 100 mm; 35-40 cells), and measures averaged across 10 such sub-populations for each simulation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlations
Pairwise correlations between GoCs were calculated in 40 ms bins on DF/F traces (total correlation) or after projecting out the first

population mode (residual correlations). To check significance, correlation was recalculated after shuffling traces by circularly

permuting activity (independently for different neurons). This was repeated 500 times to calculate a null distribution of correlations

for each pair. The pair was considered to have significant positive correlation if it exceeded 97.5th percentile of the null distribution

for that pair, and to have negative correlation if it was lower than the 2.5th percentile. Similar analyses were performed for event rates

(events smoothed in 200 ms bins).

Tomeasure dependence on pairwise distance between GoCs ðdÞ, correlations were averaged over 20 mmbins, and fit with a linear

function (total correlations), or exponential function (residual correlations):

r dð Þ = A$d +b Linear fit for total correlation
r dð Þ= A exp �d

l

� �
+b Exponential fit for residual correlation

This was done separately for all residual correlations, and pairs with significant positive and negative residual correlation. The first

20 mm were excluded from analyses to avoid contamination from fluorescence arising from the soma of an individual cell.
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Calculation of population modes and residual activity
Singular value decomposition (SVD) was used to decompose (zero-centered) neural population activity into orthogonal population

modes: X = USVT , where S is a diagonal matrix of covariance along different modes (eigenvalues of covariance matrix, visualized

in Figure 2B), U is the loadings matrix, V is the dynamics along different modes and where VT is the transpose of V.

Residual activity of each neuron was calculated by projecting out the top mode (i.e., projecting the activity on the N-1 dimensional

space excluding PM1). This was done by first decomposing the population activity using SVD, and then retaining all but the first mode

to reconstitute residual activity:

Xres = U�1$S�1$V
T
�1

where U�1and V�1 only have columns 2 to N of U and V respectively, and S�1 only has the corresponding N-1 rows and columns.

Identification of shared, reliable modes
For assessing the contribution of different modes and identifying reliable population modes (i.e., shared), we used bi-cross-vali-

dation after decomposing activity into modes with SVD (Owen and Perry, 2009; Stringer et al., 2019). The data was divided into

training (70%) and test (30%) sets, and the training data decomposed to find the loadings ðUÞ. We then retained the top K

modes, and the corresponding loadings (UK , first K columns of U) to quantify the explained variance by this K-dimensional

reconstruction of the population activity. We further split the test data into a second partition of training neurons (X1, 80 %

of the population) and test neurons (X2, 20% of the population). The low-rank approximation for the entire test data can be writ-

ten in block format:

½X1 ; X2�z
�
UK

1 ; U
K
2

�
SteV

T
te

We use the upper block to estimate the K latent dynamics ðSteV
T
teÞ via linear regression, and use the lower block to get a rank-K es-

timate for X2:

cX2 = UK
2 $

� bSte
bVT

te

�
= UK

2 $pinv
�
UK

1

�
$X1

where pinv is the Moore-Penrose pseudoinverse. The average explained variance by the reconstruction of test data was computed

for 30 repeats with different training/test partitions.

Dimensionality
To estimate the number of reliable population modes in the population activity we used the cross-validated explained variance

(CVEV) on test data, as defined above. CVEV increased with stable population modes, and started decreasing once it was overfit

to training data. Thus the peak of the relationship between explained variance and number of modes (K) provides a lower limit for

the number of reliable population modes (shared dimensionality) and the maximal explainable variance for a given recording. This

method weighted large and weak modes equally (similar to a threshold method), as long as there was significant generalization to

test data. Due to the requirement of generalization to held-out neurons, this only captures modes that are shared between at least

a few GoCs (i.e., shared subspace), and cannot distinguish independent measurement noise from reliable but private variability of

individual GoCs. It is thus a lower bound for the dimensionality of the total GoC coding space, limited by SNR and shared variability.

We also used a different definition of dimensionality that reflects the entire eigenvalue distribution along different modes (Abbott

et al., 2011). The effective dimensionality ðDeff Þ, also sometimes referred to as ‘participation ratio’, was defined as

Deff =

 XK
i = 1

bl2i
!�1

where bl2i = l2i	PK
i = 1li


2
and li is an eigenvalue of the covariance matrix. If the variance is equally distributed alongMmodes (and all other modes have zero

variance), then Deff = M. If, instead, one mode captures most of the variance, Deff will be close to 1. This includes both shared and

independent variability but is sensitive to the relative amplitudes of different modes. It cannot exclude measurement noise, but may

be more suitable for a stricter lower bound on net input variability in the case of homogeneous downstream connectivity and ‘linear’

postsynaptic responses.

Similarity of loadings
To compute similarity of neural activity accounted for by ‘signal’ modes (i.e., all population modes upto the peak of CVEV curves),

we computed the dot product of the corresponding loadings (excluding the large PM1) onto each pair of neurons (Figures 6E and

S7E). Specifically, for a recording with signal dimensionality of K, we took the columns 2 to K of the loadings ðUÞ, where each row

ðu2:Km Þ corresponds to selected loadings for a single neuron. The response similarity (overlap) between 2 neurons was given by

u2:K1 $ u2:K2 .
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Population modes using independent-component analysis
To examine the structure of population modes identified without the constraint of Gaussian variability or orthogonal modes, we used

independent component analysis (ICA) to decompose activity into a specified number of components (which allows for activity along

modes to be heavy-tailed). To estimate the minimum dimensionality of the neural population activity, we computed the stability of

identified mode loadings on different partitions of the dataset. On each iteration, ICA was performed on two halves of a random parti-

tion of the data (time points divided in 500 ms blocks). The dot product between the loadings from the two decompositions was used

to align each mode with its maximally correlated mode from the other half. The average correlation between these aligned loadings

was computed for each iteration, and averaged across 10 such partitions for each specified number of modes. The minimal dimen-

sionality was chosen such that successive average stability values i.e., average correlation if data was decomposed into more

modes, were all less than 0.9. This conservative estimate was used to determine the analyses of variance of loadings for reliable

‘signal’ modes, and compute angles within these stable subspaces. For angles between identified modes, the first principle angle

was calculated between selected mode (PM1 or non-PM1) and the subspace defined by the remaining ‘signal’ modes.

Linear regression of population modes and behavior
Cross-validated linear regression was used to assess how well different behaviors explained the dynamics of the global population

mode (PM1), as well as whether heterogeneous GoC activity contained further behavioral information. All state and kinematic vari-

ables, and dynamics of the populationmodes were restricted to behaviorally active periods ± 500ms, and downsampled to the slow-

est acquisition rate of 20 Hz for the analysis. Data was partitioned into training (80% of time points, randomly sampled in 500 ms

blocks) and test data (20% of time points), and regression coefficients determined using L2 regularisation with mean squared error.

This was repeated for 100 different partitions of the data to give mean CVEV for each session/behavior. To examine what explained

the variability along PM1 (Figure 3), regression of PM1 was performed against individual behavioral variables, or all behaviors simul-

taneously (multilinear regression, LinearComb). Model comparison was possible despite the different number of parameters, as we

used cross-validated performance, which was optimized by using L2 regularisation to assess model performance and guard against

overfitting of the data.

A similar cross-validation procedure was used to decode individual behavioral variables from different low rank decompositions of

the population activity (Figure 7A). For a given partition of data, regression was repeated for rank 1 to rank N approximation of pop-

ulation activity, where rank K is given by retaining only the top K modes (initial SVD performed on all time points). The performance

was compared for rank 1 (only common mode, PM1) to the optimal number of modes (maximum average cross-validated explained

variance). To further confirm that the observed increase in behavioral information was specific to ongoing behavioral dynamics, we

performed two controls by repeating regression for shuffled behavioral variables (in 500ms blocks during the active periods only) and

measuring the maximal explained variance. For within-period shuffle, the 500 ms blocks from the same active period were rear-

ranged, which maintains average behavioral activity or general context, and optimal performance was expected to be comparable

to PM1 on real data. For across-period shuffle, the 500ms blocks were randomized across all active periods (this surrogate only pre-

serves the local behavioral dynamics). The optimal number of differential modes used for decodingwere determined as the number of

additional modes that increased the CVEV by at least 90% of the maximal increase (as the CVEV curves saturate).

Response to air puff
To examine the reliability of GoCs, responses to airpuff were quantified. To determine the timing of responses from GCaMP6f ki-

netics, we extracted events rather than using the slower DF/F, and used responses in 50 ms bins (based on the slowest acquisition

rate). Response latency was calculated as the latency of the first event after the onset of airpuff, as well as time of the peak event rate

(within 0-800 ms post airpuff). Additionally, the net activity was calculated in the following windows:

Activity before puff (A1): �400 ms to �200 ms from puff onset

Activity after puff (A2): 0 to 800 ms from puff onset

Early response (R1): 0 to 300 ms from puff onset

Late response (R2): 300 to 800 ms from puff onset

To calculate the response variability of single neurons (inter-trial variability), we calculated the standard deviation of onset latencies

for each neuron, as well as response rates for both early (R1) and late responses (R2) across trials. For the same session, the vari-

ability across simultaneously recorded GoCs (intra-trial variability) was computed as standard deviation of responses and latencies

across neurons on each trial. For comparision, both inter-trial and intra-trial variability were averaged across all neurons and trials

respectively for each session. These session averages were used for paired statistical testing (Wilcoxson signed-rank). To further

examine intra-trial variability, we computed pairwise correlations for each session restricted to the airpuff response epochs, by

concatenating the puff-evoked activity (0-800 ms) across all trials.

Trial-averaged response to air puff was quantified for each neuron after aligning extracted events to airpuff onset, and were further

classified as follows (for GoCs across all sessions):

(1) Class I: Fast, transient response: A2 > A1 and R1-R2 > 0.05 Hz (0.05 Hz determined as chance level)
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(2) Class II: Variable delay response: A2 > A1 and R1�R2 (R1-R2 < 0.05 Hz)

(3) Class III: No/decreased response: A1�A2 or A1 < A2

Mean latency and inter-trial variability of individual neurons were grouped by class to further report class-specific averages.

To compute reliability of GoC population responses across trials, the event rates of all GoCs within a session were collected into a

population response vector
	
rjðtÞ = ½r1jðtÞ; r2jðtÞ ; ::: ; rnjðtÞ�



for each 100 ms time bin ðtÞ aligned to puff onset, for every trial j. The

similarity for each time bin was given as the dot product between the corresponding population response vectors for a pair of trials,

averaged across all trial pairs.

SðtÞ = < rjðtÞ $rkðtÞ >j;k

For quantifying similarity of behavioral response across trials, we usedwhiskermotion index, and computed its coefficient of variation

across trials, for each puff-aligned time bin. To compare the mean weighted decay timescale of these similarity profiles, we normal-

ized the profiles between 0 to 1, and computed the integral in the 0-800ms window.

Modulation of individual Golgi cell activity within step cycle
To examine modulation of GoC activity (inferred events) with ipsilateral forelimb step cycle, we used each instance of paw lift within

running epochs, and quantified aligned GoC responses in a ± 1 s window around each lift. The average across all such sessions

defined a lift-aligned event probability for each GoC, as well as a mean trajectory of the paw. A control was defined for each

GoC, by shuffling events within each instance and then averaging those to give a ‘shuffled event probability’. Pearson correlation

was computed between the mean paw trajectory and the event probability ðreventÞ, as well as between the paw trajectory and the

shuffled event probability ðrshuff Þ. A GoCwas considered significantly modulatedwithin the step cycle if its event probability was high-

ly correlated with the lift ðjreventj > 0:5; p < 0:01Þ but the shuffle control was not ð p > 0:1Þ. Similar analyses were performed after

aligning to push-phase, using correlation with the lateral velocity.

Statistical presentation of data and tests
Unless otherwise specified, data is reported as mean ± SD in text, error bars/area in figures indicate mean ± SEM, and sample sizes

are reported as number of sessions (n) and number of animals (N). Standard least squared-error minimization was used to fit linear

and exponential functions. Multiple linear regression for population modes and behavior was performed with L2 regularisation, opti-

mized with CVEV.

Statistical significance was assessed using nonparametric tests - Mann-Whitney U Test for unpaired data and Wilcoxson signed-

rank test for paired data. For time-shuffled controls, data was shuffled in 500ms blocks, and the 95th percentile (2.5th to 97.5th) of this

distribution was used as the significance level. To test if positively and negatively-correlated populations were differentially distrib-

uted, Kolmogorov-Smirnov test was used on equally subsampled data. All sessions were considered independent samples, unless

specified.
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